a) Xét ΔHAB vuông tại H và ΔBAE vuông tại B có
\(\widehat{BAH}\) chung
Do đó: ΔHAB\(\sim\)ΔBAE(g-g)
a) Xét ΔHAB vuông tại H và ΔBAE vuông tại B có
\(\widehat{BAH}\) chung
Do đó: ΔHAB\(\sim\)ΔBAE(g-g)
Cho tam giác ABC vuông tại A ( AB<AC) có đường cao AH.
a/ Chứng minh tam giác ABC đồng dạng tam giác HBA từ đó suy ra AB2 = BH.BC
b/ Vẽ tia phân giác của góc ABC cắt AH tại I, cắt AC tại E. Chứng minh IH/IA = BI/BE
c/ Từ E kẻ đường thẳng song song với AH cắt tia BA tại P. Gọi M là giao điểm của PE và CB. Chứng minh PC2 = AH.PM + CE.CA
cho tam giác ABC vuông tại A, có AB=5cm, AC=12cm,đường cao AH(H thuộc BC). Tia phân giác của góc ABC cắt AH tại E và cắt AC tại F.
a) Tính độ dài BC,AF,FC
b)Chứng minh tam giác ABF đồng dạng với tam giác HBE
c) C/m tam giác AEF cân
d) C/m AB.FC=BC.AE
Cho tam giác ABC vuông tại A, có AB= 8cm, đường cao AH. Tia phân giác của góc C cắt AB tại D.
a) Chứng minh tam giác HBA đồng dạng với tam giác ABC
b) Tính BC, BD, AD
c) Từ B vẽ BK vuông góc với CD tại K, BK cắt AH kéo dài tại E, trên CD lấy điểm S sao cho BA=BS. Chứng minh BF vuông góc với EF
Cho ∆ABC vuông tại A, đường cao AH. Đường phân giác của góc ABC cắt AC tại D và cắt AH tại E.
a)Chứng minh: tam giác ABC đồng dạng tam giác HBA và AB2 = BC.BH
b)Biết AB = 9cm, BC = 15cm. Tính DC và AD
c)Gọi I là trung điểm của ED. Chứng minh: góc BIH = góc ACB.
cho ΔABC vuông tại A (AB<AC), kẻ đường cao AD
1) chứng minh ΔBAD đồng dạng với Δ BCA từ đó suy ra AB2 =BD*BC
2)cho BD bằng 2cm, BC bằng 32 cm. tính AD
3)cho góc ACB =30 độ, tia phân giác góc ABC cắt AD tại F và cắt AC tại E. tính AB2= AE*AC
cho tam giác ABC vuông tại A có AB=9cm,AC=12cm,đường cao AH a/ chứng minh tam giác ABC đồng dạng với tam giác HBA . Tính BC,AH. b/ kẻ HM vuông góc với AB tại M. chứng minh: HM^2=MA*MB c/ MC cắt AH tại I , đường thẳng qua I và song song với AC cắt AB,BC lần lượt tại E,F . CM: IF=IE
MỌI NGƯỜI GIÚP MÌNH VỚI Ạ!!!
Cho tam giác ABC vuông tại A và có đường cao AH.
a/ Chứng minh AHC đồng dạng với BAC và suy ra AH.BC=AB. AC
b/ Gọi CD là đường phân giác của góc ACB (D thuộc cạnh AB). CD cắt AH tại E. Chứng minh rằng: tam giác ACE đồng dạng với tam giác BCD.
c/ Gọi I là trung điểm của đoạn thẳng DE. Chứng minh rằng: AI vuông góc DE
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ đường phân giác AD của tam giácCHA và đường phân giác BK của tam giác ABC (D thuộc BC; K thuộc AC). BK cắt lần lượt AH và AD tại E và F.
a) Chứng minh: tam giác AHB đồng dạng với tam giác CHA.
b) Chứng minh:tam giác AEF đồng dạng tam giác BEH .
c) Chứng minh: KD // AH.
d) Chứng minh:EH/AB = KD/BC
GIÚP VỚI !!! ( CHỨNG MINH CHI TIẾT NHÉ )
Cho tam giác ABC vuông tại A có AB = 15cm, AC = 20cm. Kẻ đường cao AH.
a, Chứng minh tam giác HBA đồng dạng với tam giác ABC, từ đó tính độ dài đường cao AH
b, Tia phân giác của góc HAC cắt BC tại D. Chứng minh tam giác ABD cân
c, Trên cạnh AC lấy điểm E sao cho AE = AH. Chứng minh CE.CA = CD.CH
d, Chứng minh DC/DH = AC/AE