Cho hình chóp SABCD có đáy ABCD là hình thang, AD không song song BC. Gọi M là một điểm trên cạnh SC.
1) Tìm giao điểm J của AM và (SBD), tìm giao điểm N của SD và (ABM)
2) Gọi P là giao điểm của AN và BM, Q là giao của AD và BC. Chứng minh S, P, Q thẳng hàng
Cho hình chóp S. ABCD có đáy là hình chữ nhật cạnh bên SA vuông đáy. SA=a; AD=3a; AB=2a. Gọi K là hình chiếu A lên SD, O là giqo điểm AC và BD. Tính khoảng cách giữa OK và BC
Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình thang có
AD || BC, AD = 2BC. Gọi M và N lần lượt là trung điểm của các cạnh
SC và BC.
a) Tìm giao tuyến của hai mp (SAB) và (SCD).
b) Chứng minh MN || (SBD).
c) Tìm giao điểm của SD với mp (AMN)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 2a, tâm O, SA = SB = 4a. Gọi G là trọng tâm tam giác BCD, (α) là mặt phẳng qua G và song song với (SAD). Tính diện tích thiết diện của (α) và hình chóp.
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AC=a căn 3, BC = 2a, SA vuông góc (ABCD), SA=3a. Gọi O là giao điểm của AC và BD. a) Tính góc giữa mp ( SAB) và mp (SBC). b) Tính khoảng cách từ A đến mp ( SBD)
Cho hình chóp S.ABCD có ABCD là hình bình hành tâm O. Gọi M là trung điểm cạnh SA và (a) là mặt phẳng chứa OM song song với AD. Gọi N,P,Q lần lượt là giao điểm của (a) với các cạnh SD, CD và AB.
1/ Thiết diện của (a) với hình chóp là gì?
2/ Chứng minh SB // (a).
3/ Giả sử SBC là tam giác đều. Tính số đo các góc của tứ giác MNPQ.
Cho hình chóp SABCD có đáy ABCD là hình thang, đáy lớn là AD. Gọi M,N,P lần lượt là trung điểm của AB,SA,SD.
a. Tìm giao tuyến của 2 mp (SAB) và (SCD)
b. chứng minh NP // (SBC)
c. tìm giao điểm của SC với mp(MNP)
cho S.ABCD có đáy là hình thang sao cho AD song song BC và AD=2BC .M là trung điểm SA khi đó xác định thiết diện hình chóp cắt bởi mặt phẳng (MBC)
Giups em vs ạ
hình chóp S.ABCD có đáy là hình thang ABCD có CD // AB, AB =2CD, M là trung điểm AD, I là trung điểm SC, O là giao điểm AC và BD.
a) Cmr: MI // (SAB)
b) xđ thiết diện của hình chóp S.ABCD bị cắt bởi (MOI)
c) Xđ giao điểm MI với (SBD)