Bài 2: Hai đường thẳng vuông góc

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho hình chóp tam giác S.ABC có SA = SB = SC và có \(\widehat{\:ASB}=\widehat{BSC}=\widehat{CSA}\). Chứng minh rằng \(SA\perp BC;SB\perp AC;SC\perp AB\) ?

Hiiiii~
31 tháng 3 2017 lúc 11:48

(h.3.19)

= SA.SC.cos - SA.SB.cos = 0.

Vậy SA ⊥ BC. 
\(\overrightarrow{SB}.\overrightarrow{AC}=\overrightarrow{SB}\left(\overrightarrow{SC}-\overrightarrow{SA}\right)=\overrightarrow{SB}.\overrightarrow{SC}-\overrightarrow{SB}.\overrightarrow{SA}\)
\(=SB.SC.cos\widehat{BSC}-SB.SA.cos\widehat{BSA}=0\).
Vậy \(SB\perp AC\).
\(\overrightarrow{SC}.\overrightarrow{AB}=\overrightarrow{SC}.\left(\overrightarrow{SB}-\overrightarrow{SA}\right)=\overrightarrow{SC}.\overrightarrow{SB}-\overrightarrow{SC}.\overrightarrow{SA}\)
\(=SC.SB.cos\widehat{BSC}-SC.SA.cos\widehat{CSA}=0\).
Vậy \(SC\perp AB\).


Các câu hỏi tương tự
Nguyễn Huỳnh Bá Lộc
Xem chi tiết
Julian Edward
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
trần khánh dương
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Mạnh Hiếu
Xem chi tiết
Hà Như Ngọc
Xem chi tiết
Thành Mai
Xem chi tiết