a: CD vuông góc AD
CD vuông góc SA
=>CD vuông góc (SAD)
c: (SC;(SAD))=(SC;SD)=góc CSD
Vì ABCD là hình vuông nên \(AC=a\sqrt{2}\)
\(SC=\sqrt{SA^2+AC^2}=a\sqrt{5}\)
\(SD=\sqrt{SA^2+AD^2}=2a\)
\(cosCSD=\dfrac{SC^2+SD^2-CD^2}{2\cdot SC\cdot SD}=\dfrac{5a^2+4a^2-a^2}{2\cdot a\sqrt{5}\cdot2a}=\dfrac{2\sqrt{5}}{5}\)=>\(\widehat{CSD}\simeq27^0\)