Cho hình chóp SABCD, ABCD là hình bình hành với AB=a, AD=2a. Tam giác SAB vuông tại A, lấy M∈AD, AM=x (0 < x ≤ 2a). Mặt phẳng (α) qua M // SA, AB cắt BC, SC, SD lần lượt tại N,P,Q
a. Tìm giao tuyến (SBC) & (SAD)
b. MNPQ là hình gì
c. Tính SMNPQ theo a và x
d. Tìm x để SMNPQ= \(\dfrac{3a^2}{8}\)
e. Tìm tập hợp giao điểm I của MQ và NP. Khi M chạy trên AD