Gọi \(O\) là giao điểm của \(AC\) và \(BD\). Ta có:
\(I\) là trung điểm của \(SD\)
\(O\) là trung điểm của \(BD\) (theo tính chất hình bình hành)
\( \Rightarrow OI\) là đường trung bình của tam giác \(SB{\rm{D}}\)
\( \Rightarrow OI\parallel SB\)
Ta có:
\(\begin{array}{l}Cx = \left( {IAC} \right) \cap \left( {SBC} \right)\\SB = \left( {SB{\rm{D}}} \right) \cap \left( {SBC} \right)\\OI = \left( {IAC} \right) \cap \left( {SB{\rm{D}}} \right)\\SB\parallel OI\end{array}\)
Do đó theo định lí 2 về giao tuyến của ba mặt phẳng ta có: \(OI\parallel SB\parallel Cx\).