\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)
\(tan\widehat{SCA}=\dfrac{SA}{AC}=\dfrac{a\sqrt{6}}{a\sqrt{2}}=\sqrt{3}\)
\(\Rightarrow\widehat{SCA}=60^0\)
\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)
\(tan\widehat{SCA}=\dfrac{SA}{AC}=\dfrac{a\sqrt{6}}{a\sqrt{2}}=\sqrt{3}\)
\(\Rightarrow\widehat{SCA}=60^0\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh a, SA vuông góc với đáy (ABCD). Góc giữa đường thẳng SC và mặt phẳng (SAB) bằng α với tanα=\(\dfrac{\sqrt{10}}{5}\). Tính góc giữa đường thẳng SO và mặt phẳng (ABCD).
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a,SA vuông góc (ABCD) SA=a. Tính khoảng cách giữa hai đường thẳng chéo nhau SC và AB
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=a và vuông góc với (ABCD). Tính khoảng cách từ trọng tâm tam giác SBC đến mặt phẳng (ABCD)
Cho hình chóp S.ABCD có đáy là nửa lục giác đều ABCD nội tiếp trong đường tròn đường kính AD = 2a và có cạnh SA vuông góc với mặt phẳng đáy (ABCD) với \(SA=a\sqrt{6}\)
a) Tính các khoảng cách từ A và B đến mặt phẳng (SCD)
b) Tính khoảng cách từ đường thẳng AD đến mặt phẳng (SBC)
Cho hình chóp S.ABCD có có đáy là hình thoi cạnh a, góc ABC = 120 độ, SA vuông góc với (ABCD). Biết góc giữa hai mặt phẳng (SBC) và (SCD) bằng 60 độ. K là trung điểm của SC tính d(BK;AD)
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, cạnh a, cạnh SAL(ABCD). Biết St= a/3, BAD = 1200. a) Chứng minh (SIC)L(SBD). b) Tính góc giữa SC với mặt phẳng (ABCD). c) Tính góc giữa hai mặt phẳng (SBC) và (ABCD). d) Tính khoảng cách giữa tôi và SC. c) "Gọi 7 là điểm bất kì thuộc đoạn thẳng $4. Dung thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng đi qua và vuông góc với St. Tìm vị trí điểm P để diện tích thiết diện thu được bằng một nửa diện tích hình thoi ABCD.
cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với đáy SA=a căn 3 a)cm SAC vuông góc với SBD b)gọi AH là đg cao của tam giác SAB . cmr AK vuông góc với (SBC) c) tính góc giữa đg thẳng SC và mặt đáy ABC d) tính khoảng cách từ a đến mp (SCD)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với đáy, SA=a\(\sqrt{2}\)
a) CMR các mặt bên của hình chóp là những tam giác vuông.
b) CMR (SAC) vuông góc với (SBD)
c)Tính góc giữa SC và mp (SAB)
d)Tính góc giữa hai mp(SBD) và (ABCD)
e)Tính khoảng cách giữa điểm A và mp (SCD).