Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a , SA⊥(ABCD) và SA=2a
a. Chứng minh BD ⊥ (SAC)
b. Chứng minh (SAC) ⊥ (SBD)
c. Tính góc giữa SB và (SAD)
d. Tính d ( A, (SCD))
Cho hình chóp S.ABCD có đáy ABCD là hình vuông có cạnh bằng a√2; SA vuông góc (ABCD) và SA=2a . Gọi E là hình chiếu vuông góc của A trên cạnh SB .
4.1. Chứng minh BD ⊥ (SAC) .
4.2. Chứng minh BC ⊥ (SAB) và (AEC) ⊥ (SBC) .
4.3. Gọi G và K lần lượt là trọng tâm của các tam giác SAD và ACD Tính góc giữa đường thẳng GK và mặt phẳng (SAB) .
Cho chóp S.ABCD có đáy là hình vuông cạnh a, SA⊥(ABCD), SA=\(a\sqrt{6}\). Tính góc α giữa đường SC và mặt phẳng (SAD)
Hình thoi ABCD tâm O có cạnh a và có \(OB=\dfrac{a\sqrt{3}}{3}\). Trên đường thẳng vuông góc với mặt phẳng (ABCD) tại O ta lấy một điểm S sao cho SB = a
a) Chứng minh tam giác SAC là tam giác vuông và SC vuông góc với BD
b) Chứng minh \(\left(SAD\right)\perp\left(SAB\right),\left(SCB\right)\perp\left(SCD\right)\)
c) Tính khoảng cách giữa hai đường thẳng SA và BD
Cho hình chóp S.ABCD, đáy ABCD là hình thoi cạnh a, \(\widehat{BAD}=60^0,SA=SB=SD=a\)
a) Chứng minh (SAC) vuông góc với (ABCD)
b) Chứng minh tam giác SAC vuông
c) Tính khoảng cách từ S đến (ABCD)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc vs mặt đáy, SA=a căn 3. Gọi O là giao điểm của BD và AC 1. CMR: CD vuông góc ( SAD) 2. CMR: SO vuông góc BD 3.xác định và tính góc giữa SO và mp( ABCD)
Cho hình chóp SABCD, có đáy là hình thang vuông tại A, B, AD = 2BC = 2AB = 2a; SA vuông với đáy, SA = 2a. Gọi I, J lần lượt là trung điểm AD, SD
a) Tính góc giữa SB và (SCD)
b) Tính góc giữa SB và (SCI)
Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a có góc \(\widehat{BAD}=60^0\) và \(SA=SB=SD=\dfrac{a\sqrt{3}}{2}\) :
a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC
b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD)
c) Chứng minh SB vuông góc với BC
d) Gọi \(\varphi\) là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính \(\tan\varphi\)
Cho chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và (SCD) tạo với mặt phẳng đáy góc 45°. Tính góc giữa (SBC) và (SCD).