Bài 5: Khoảng cách

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
thu thu

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O. AB=a,BD=a căn 3  biết hình chiếu của S lên (ABCD) là điểm M với M là trung điểm OB. Đồng thời SH= a căn3

a)       Tính góc giữa (SCD) và (ABCD)

b)      Khoảng cách (SD, BC)

c)       Khoảng cách (SB,AC)

Nguyễn Việt Lâm
7 tháng 4 2022 lúc 22:43

Chắc đề là \(SM=a\sqrt{3}\) vì không có điểm H nào trong dữ liệu

\(BC=AD=\sqrt{BD^2-AB^2}=a\sqrt{2}\)

a.

Qua M kẻ đường thẳng song song BC cắt CD tại E

\(\Rightarrow CD\perp ME\Rightarrow CD\perp\left(SME\right)\)

\(\Rightarrow\widehat{SEM}\) là góc giữa (SCD) và (ABCD)

Áp dụng định lý talet trong tam giác BCD:

\(\dfrac{EM}{BC}=\dfrac{DM}{BD}=\dfrac{3}{4}\Rightarrow EM=\dfrac{3}{4}BC=\dfrac{3a\sqrt{2}}{4}\)

\(\Rightarrow tan\widehat{SEM}=\dfrac{SM}{EM}=\dfrac{2\sqrt{6}}{3}\)

\(\Rightarrow\widehat{SEM}\approx58^031'\)

Nguyễn Việt Lâm
7 tháng 4 2022 lúc 22:50

b.

\(BC||AD\Rightarrow BC||\left(SAD\right)\)

\(\Rightarrow d\left(BC;AD\right)=d\left(BC;\left(SAD\right)\right)=d\left(B;\left(SAD\right)\right)\)

Lại có: BM cắt (SAD) tại D, mà \(BD=\dfrac{4}{3}MD\)

\(\Rightarrow d\left(B;\left(SAD\right)\right)=\dfrac{4}{3}d\left(M;\left(SAD\right)\right)\)

Trong mp (ABCD), từ M kẻ \(MH\perp AD\)

Trong mp (SMH), từ M kẻ \(MK\perp SH\)

\(\Rightarrow MK\perp\left(SAD\right)\Rightarrow MK=d\left(M;\left(SAD\right)\right)\)

Talet cho tam giác ABD:

\(\dfrac{MH}{AB}=\dfrac{MD}{BD}=\dfrac{3}{4}\Rightarrow MH=\dfrac{3}{4}AB=\dfrac{3a}{4}\)

Hệ thức lượng trong tam giác vuông SMH:

\(MK=\dfrac{SM.MH}{\sqrt{SM^2+MH^2}}=\dfrac{3a\sqrt{19}}{19}\)

\(\Rightarrow d\left(SD;BC\right)=\dfrac{4}{3}MK=\dfrac{4\sqrt{19}}{19}\)

Nguyễn Việt Lâm
7 tháng 4 2022 lúc 23:01

c.

Qua B kẻ đường thẳng d song song AC

Trong mp (ABCD), từ M hạ \(MF\perp d\)

\(AC||d\Rightarrow AC||\left(SBF\right)\Rightarrow d\left(AC;SB\right)=d\left(AC;\left(SBF\right)\right)=d\left(O;\left(SBF\right)\right)\)

Mà \(OM\) cắt \(\left(SBF\right)\) tại B đồng thời \(OB=2MB\)

\(\Rightarrow d\left(O;\left(SBF\right)\right)=2d\left(M;\left(SBF\right)\right)\)

Trong mp (SMF), từ M hạ \(MI\perp SF\)

\(\Rightarrow MI\perp\left(SBF\right)\Rightarrow MI=d\left(M;\left(SBF\right)\right)\)

Ta có: \(\widehat{MBF}=\widehat{AOB}\) (so le trong)

\(cos\widehat{AOB}=\dfrac{OA^2+OB^2-AB^2}{2OA.OB}=\dfrac{1}{3}\)

\(\Rightarrow cos\widehat{MBF}=\dfrac{1}{3}\Rightarrow MF=BM.cos\widehat{MBF}=\dfrac{1}{4}BD.\dfrac{1}{3}=\dfrac{a\sqrt{3}}{12}\)

Áp dụng hệ thức lượng trong tam giác vuông SMF:

\(MI=\dfrac{SM.MF}{\sqrt{SM^2+MF^2}}=...\)

\(\Rightarrow d\left(SB;AC\right)=2MI=...\)

Nguyễn Việt Lâm
7 tháng 4 2022 lúc 23:02

undefined


Các câu hỏi tương tự
Hoàng Loan
Xem chi tiết
Trường Phạm
Xem chi tiết
Jennyle11
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
xin gam
Xem chi tiết
Trần Mai Linh
Xem chi tiết
Kate11
Xem chi tiết
Thức Đinh Thị
Xem chi tiết