\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\)
\(\Rightarrow BC\perp SB\)
\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp DO\\BD\perp AC\Rightarrow DO\perp AC\end{matrix}\right.\) \(\Rightarrow DO\perp\left(SAC\right)\)
\(\Rightarrow\) SO là chính chiếu của SD lên (SAC)
\(\Rightarrow\widehat{DSO}\) là góc giữa SD và (SAC)
\(BD=a\sqrt{2}\Rightarrow DO=\frac{1}{2}BD=\frac{a\sqrt{2}}{2}\)
\(SD=\sqrt{SA^2+AD^2}=\frac{5a}{4}\)
\(\Rightarrow sin\widehat{DSO}=\frac{DO}{SD}=\frac{2\sqrt{2}}{5}\Rightarrow34^027'\)