b) Trong (SCD): Gọi M là giao của GF và CD.
Trong (SBD): Gọi N là giao của EG và BD.
Trong (ABCD): Gọi H là giao của AC và MN.
Vậy H là giao của đường thẳng AC và (EFG).
b) Trong (SCD): Gọi M là giao của GF và CD.
Trong (SBD): Gọi N là giao của EG và BD.
Trong (ABCD): Gọi H là giao của AC và MN.
Vậy H là giao của đường thẳng AC và (EFG).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành.Gọi M là trung điểm của SA và E là trung điểm của SB; P là điểm thuộc cạnh SC sao cho SC=3SP. Tìm giao điểm của DB và mặt phẳng (MPE)
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SA, E là điểm trên đoạn SB sao cho \(SE=\dfrac{2}{3}SB\). Thiết diện của mp đi qua M, song song với DE và SC với S.ABCD là hình gì?
Bài 2 :Cho hình chóp S.ABCD. Tứ giác ABCD là hình bình hành Gọi M, N, P lần lượt là trung điểm AB, CD và SA. a. CMR MN song song với các mp (SBC) và (SAD) b.Xác định giao tuyến của (SBD) với mp(MNP) c.CMR SC song song với (MNP) d.Gọi G,G, lần lượt là trọng tâm các tam giác ABC và tam giác anh CMR GG, // với (SAD)
Cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm của AB, CD.
a) Chứng minh MN // (SBC); MN // (SAD).
b) Gọi I là trung điểm SA. Tìm giao điểm K của (INM) và SD.
c) Chứng minh: SB, SC // (IMN).
d) Gọi H là trung điểm IO. Chứng minh HK // (SBC).
Cho hình chóp SABCD, có đáy ABCD là hình bình hành tâm O.
a) Tìm giao tuyến của hai mặt phẳng SAC và SBD ?
b) Gọi M là trung điểm của SD. Chứng minh: SB / /MAC?
c) Gọi I là trung điểm của AB. Tìm giao điểm của đường thẳng MI và mặt phẳng SAC ?
d) Thiết diện của hình chóp cắt bởi mặt phẳng P đi qua điểm M và song song với SBC?
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M,N lần lượt là trung điểm SA, BC
a) Cm: SC // (MBD)
b) Cm: MN // (SCD)
giúp em với ạ, em cảm ơn
cho hình chóp S.ABCD đáy ABCD là hình bình hành tâm O.Gọi I,J lần lượt là trung điểm BC,SC, K(SD sao cho SK=KD.
a> Cm: OJ//(SAD), OJ//(SAB)
B>CM: OI//(SCD), IJ//(SBD)
C> Gọi M là giao điểm cũa AI và BD. CM MK//(SBC)
cần gấp ạ!
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. M là một điểm di động trên đoạn AB. Một mặt phẳng \(\left(\alpha\right)\) cắt SB, SC và CD lần lượt tại N, P và Q
a) Tứ giác MNPQ là hình gì ?
b) Gọi I là giao điểm của MN và PQ. Chứng minh rằng I nằm trên một đường thẳng cố định ?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a . Tam giác SAB đều và \(SC=a\sqrt{2}\) . Gọi H và K lần lượt là trung điểm AB và AD .
a) chứng minh \(SH\perp\left(ABCD\right)\)
b) chứng minh \(AC\perp SK\) và \(CK\perp SD\) .