\(2AC^2=AB^2\Rightarrow AC^2=8a^2\)
\(SA=\sqrt{SB^2-AB^2}=2a\sqrt{5}\)
\(\Rightarrow V=\frac{1}{3}SA.\frac{1}{2}AC^2=\frac{8a^3\sqrt{5}}{3}\)
\(\Rightarrow\frac{4a^3}{3V}=\frac{\sqrt{5}}{10}\)
\(2AC^2=AB^2\Rightarrow AC^2=8a^2\)
\(SA=\sqrt{SB^2-AB^2}=2a\sqrt{5}\)
\(\Rightarrow V=\frac{1}{3}SA.\frac{1}{2}AC^2=\frac{8a^3\sqrt{5}}{3}\)
\(\Rightarrow\frac{4a^3}{3V}=\frac{\sqrt{5}}{10}\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Gọi H là trung điểm của AB. Tính cosin của góc giữa SC và (SHD)
Cho hinh chóp S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng \(\left(\alpha\right)\) cắt SA, SB, SC, SD tại A', B', C', D'. CMR: \(\dfrac{SA}{SA'}+\dfrac{SB}{SB'}=\dfrac{SC}{SC'}+\dfrac{SD}{SD'}\)
1) Tìm tất cả các giá trị của m để phương trình x+1=m\(\sqrt{2x^2+1}\)có 2 nghiệm phân biệt
A. \(\frac{-\sqrt{2}}{2}< m< \frac{\sqrt{6}}{6}\) B. \(m< \frac{\sqrt{2}}{2}\) C. \(m>\frac{\sqrt{6}}{6}\) D. \(\text{}\text{}\frac{\sqrt{2}}{2}< m< \frac{\sqrt{6}}{2}\)
2) Cho hình chóp S.ABC có đáy là ΔABC vuông cân ở B, AC=a\(\sqrt{2}\), SA ⊥ (ABC), SA=a. Gọi G là trọng tâm của ΔSBC, mp(α) đi qua A, G và song song với BC chia khối chóp thành hai phần. Gọi V là thể tích của khối đa diện không chứa đỉnh S. Tính V
A. \(\frac{4a^3}{9}\) B. \(\frac{4a^3}{27}\) C. \(\frac{5a^3}{54}\) D.\(\frac{2a^3}{9}\)
Bài 3. Cho tam giác ABC, điểm P nằm trong ΔABC. Gọi B', C' lần lượt là điểm đối xứng với P qua AC, AB; E, F lần lượt là hình chiếu vuông góc của P trên AC AB. Đường tròn đường kính AP cắt đường tròn (AB'C') tại Q (Q≠A) .Chứng minh rằng PEQF là tứ giác điều hòa.Bài 5. Cho tam giác ABC (AB<AC) nội tiếp (O), M là trung điểm BC. Các điểm N, P thuộc đoạn BC sao cho MN=MP. Các đường thẳng AM, AN, AP cắt (O) lần lượt tại D, E, F. Chứng minh rằng BC, EF và tiếp tuyến của (O) tại D đồng quy.Bài 6. Cho tam giác ABC ngoại tiếp đường tròn (I). Gọi D, E, F lần lượt là các tiếp điểm của (I) với các cạnh BC, CA, AB . Các điểm M, N thuộc (I) sao choEM||FN||BC. Gọi P, Q lần lượt là các giao điểm của BM, CN với (I). Chứng minh BC, PE, QF đồng quy.Bài 7. Cho tam giác ABC nội tiếp trong đường tròn (O) có A cố định và B, C thay đổi trên (O) sao cho BC luôn song song với mộtđường thẳng cố định cho trước. Các tiếp tuyến của (O) tại B và C cắt nhau tại K. Gọi M là trung điểm BC ,N là giao điểm của AM với (O). Chứng minh rằng đường thẳng KN luôn đi qua một điểm cố định.Bài 8. Cho tam giác nhọn ABC nội tiếp (O) (BC < 2R). Gọi D, E, F lần lượt là trung điểm BC, CA, AB và P, M, N lần lượt là hình chiếu vuông góc của A, B, C lên BC, DF, DE. Các tiếp tuyến tại M và N của đường tròn (PMN) cắt nhau tại một điểm S. Chứng minh S luôn thuộc một đường thẳng cố định khi điểm A di động trên (O).Bài 9. Cho điểm P nằm ngoài đường tròn (O). PC là tiếp tuyến của(O), PAB là cát tuyến, CD là đường kính của (O). Gọi E=OP giao BD . Chứng minh rằng CE⊥CA.Bài 10. Cho tứ giác điều hòa ABCD nội tiếp (O), M là trung điểmBD P=AM giao (O), Q=M giao (O).a) Chứng minh rằng AC AM , là hai đường đẳng giác của góc BAD.b) Chứng minh rằng CP||BD, AQ||BD.
Cho tam giác ABC, điểm P nằm trong ΔABC. Gọi B', C' lần lượt là điểm đối xứng với P qua AC, AB; E, F lần lượt là hình chiếu vuông góc của P trên AC AB. Đường tròn đường kính AP cắt đường tròn (AB'C') tại Q (Q≠A) .Chứng minh rằng PEQF là tứ giác điều hòa.
1 cho hình chóp S.ABCD đều có SA=AB=a. Góc giữa SA và CD là
2 Gọi M,m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y=\(\frac{\sqrt{x^2-1}}{x-2}\) trên tập hợp D= \(\left(-\infty;-1\right)\cup\left[1;\frac{3}{2}\right]\) . Tính M+m
A .P=2
B P=0
C P=-\(\sqrt{5}\)
D P = \(\sqrt{3}\)
3 Tập nghiệm của bất phương trình \(\left(\frac{1}{1+a^2}\right)^{2x+1}\) >1 ( với a là tham số , a#0) là
4 Trong ko gian cho tam giác ABC vuông tại A ,AB=a, AC=\(a\sqrt{3}\) . Tính độ dài đường sinh l của hình nón có được khi quay tam giác ABC xung quanh trục AB
5 Viết công thức tính V của vật thể nằm giữa hai mp x=0, x=ln4, biết khi cắt vật thể bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ x (\(0\le x\le ln4\)), ta được thiết diện là một hình vuông cạnh là \(\sqrt{xe^x}\)
6 cho cấp số cộng có u1=0 và công sai d =3. Tổng của 26 số hạng đầu tiên của cấp số cộng đó bằng bao nhiêu
7 cho khối chóp tam giác có đường cao bằng 100cm và cạnh đáy 20cm,21cm,29cm. Tính thể tích khối chóp
8 cho hai điểm A(-2;1;2),B(0;-1;1).Phương trình mặt cầu đường kính AB
9 Cho hình lập phương ABCD.\(A^,B^,C^,D^,\) , gÓC giữa hai đường thẳng \(B^,A\) và CD bằng
10 Tổng giá trị lớn nhất và nhỏ nhất của hàm số y= \(\sqrt{2-x^2}-x\) bằng
A \(2+\sqrt{2}\)
B 2
C 1
D \(2-\sqrt{2}\)
11 Số giao điểm của đồ thị hàm số y= \(x^2/x^2-4/\) với đường thẳng y=3 là
12 Tập nghiệm của bất pt \(log_{\frac{1}{3}}\left(x+1\right)>log_3\left(2-x\right)\) là S =(a;b) \(\cup\) (c;d) với a,b,c,d là các số thực. Khi đó a+b+c+d bằng
A 4
B 1
C 3
D 2
13 Tính thể tích khối tròn xoay sinh ra khi quay tam giác đều ABC cạnh bằng 1 quanh AB
14 trong ko gian với hệ trục tọa độ Oxyz, cho đường thẳng d :\(\frac{x-1}{1}=\frac{y+2}{-1}=\frac{z}{2}\) . MẶT phẳng (P) đi qua điểm M (2;0;-1) và vuông góc vói d có pt là
A x-y+2z=0
B x-2y-2=0
C x+y+2z=0
D x-y-2z=0
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 3a. biết SA vuông góc với mặt đáy. biết tam giác SBD là tam giác đều. Thể tích khối chóp S.ABCD bằng
1 tìm họ nguyên hàm của hàm số f(x) \(3^x+\frac{1}{x^2}\)
2 Cho lăng trụ đứng ABC.\(A^,B^,C^,\) có đáy ABC là tam giác đều cạnh a, cạnh bên \(A^,B\) tạo với đáy một góc \(45^0\) . Thể tích khối lăng trụ ABC\(A^,B^,C^,\)
3 tỔNG số tiệm cận đứng và ngang của đồ thị hàm số \(y=\frac{\sqrt{x^2-4}}{x^2-5x+6}\) là
4 Tìm số thực x,y thỏa mãn (1-2i)x+(1+2y)i=1+i là
5 trong ko gian với hệ tọa độ OXYZ cho tam giác ABC vơi A(1;1;1),B(-1;1;0),C(1;3;2). đướng trung tuyến xuất phát từ đỉnh A của tam giác ABC nhận vecto \(\overline{a}\) nào dưới đây là một vecto chi phương
6 cho cấp số cộng (un) có số hạng đầu u1=2 và u3=6. cOng sai của cấp số đã cho bằng
7 cắt khối trụ bởi một mp chứa trục ta dc một thiết diện là hình vuông có diện tích bằng 4. Thể tích khối trụ đó bằng
8 Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với (ABC) =a . Tang của góc giữa 2 mp (SBC) và (ABC) bằng
1 Trong không gian, cho tam giác ABC vuông tại A , AC=3a và BC=5a. Khi quay quanh tam giác ABC quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón. Diện tích xung quanh hình nón đó là
2 cho \(\int_1^3f\left(x\right)dx=4\) . Tính I=\(\int_1^9\frac{f\left(\sqrt{x}\right)}{\sqrt{x}}\) dx là
A.4 B.8 C.2 D.6
3 cho hàm số f(x)= \(\frac{x^2+m^2x-10}{x-1}\) (m là tham số thực) . Tinh tổng các giá trị nguyên của m để hàm số đã cho đồng biến trên khoảng xác định
A .7 B.0 C.6 D.3
4 Cho cấp số nhân (\(u_n\) ) với \(u_2\) =8 và công bội q=3. Số hạng đầu tiên \(u_1\) của cấp số nhân đã cho bằng
5 tìm nghiệm pt \(log_2\left(x-5\right)=3\)
6 Thể tích khối lập phương \(ABCD.A^,B^,C^,D^,\) có AC= \(a\sqrt{6}\) là
7 đạo hàm của hàm số y=\(e^{2x}\)
8 tính \(\int\) \(3^x\)dx, kết quả là
9 khối chóp S.ABC có thể tích V=\(\frac{2\sqrt{2}}{3}\) và diện tích đáy = \(\sqrt{3}\) . Chiều cao của khối chóp S.ABC bằng
10 Bán kính r của khối cầu có thể tích V= \(36\pi\left(cm^3\right)\) là
A r=3(cm) B r= \(\sqrt{27}\)(cm) C r=\(\sqrt[3]{48}\left(cm\right)\) D. r=\(\sqrt[3]{9}\left(cm\right)\)