Gọi HH là trung điểm của BCBC suy ra
SH⊥(ABC)⇒SH=√SB2−BH2=a√3\2
ˆ(SA,(ABC))=ˆ(SA,HA)=ˆSAH=α
Gọi HH là trung điểm của BCBC suy ra
SH⊥(ABC)⇒SH=√SB2−BH2=a√3\2
ˆ(SA,(ABC))=ˆ(SA,HA)=ˆSAH=α
Bài 1 : cho hình chóp SABCD có đáy ABCD là hình vuông và SH vuông góc với mặt phẳng ( ABCD ) tại trung điểm H của cạnh AD .
a, CM tam giác SCD vuông
b, Gọi M,K là trung điểm BC , SA . Chứng minh ( SCD ) song song ( HKM )
c, ( HKM ) cắt SB tại N . Chứng minh HKMN là hình thang vuông
Bài 2 : cho hình chóp SABCD đáy là hình vuông và SM vuông với ( ABCD ) với M là trung điểm AD .
a, CM : tam giác SAB và tam giác SCD vuông
b, Gọi N là trung điểm CD , CM AN vuông góc với ( SMB)
giúp mình với nha , cảm ơn nhiều ạ
Cho hình chố SABC, có đáy ABC là tam giác vuông cân tại B, SA vuông (ABC). Gọi M là trung điểm của AC. a, Chứng minh rằng (SBM) vuông (SAC) b, Gọi H,K lần lượt kaf hình chiếu của A lên AB. CmR (AHK) vuông (SBC)
Cho hình chóp S.ABCD đáy là hình vuông có cạnh 2a. Cạnh SA=a và vuông góc với đáy. Gọi M là trung điểm của CD. Tính cos α với α là góc tạo bởi 2 đường thắng SB, AM.
cho hình chóp s.abcd có đáy abcd là hình vuông tâm o cạnh a, SA vuông góc với đáy; \(SA=a\sqrt{3}\) . tính cosin góc giữa 2 đg thg SB và AC?
cho hình chóp s.abc có sa=sb=sc=a và tam giác abc đều cạnh \(a\sqrt{2}\). tính cosin góc giữa SC và AB?
Cho hình chóp S. ABCD có đáy là hình vuông góc với đáy ABCD. Tính góc giữa 2 mặt phẳng SAB và SAD
Cho hình chóp S. ABCD có SA vuông góc vs đáy và SA=a , đáy ABCD là hình thang vuông đường cao AB=a , BC=2a . Ngoài ra SC vuông góc BD . a ) Chứng minh ΔSBC vuông
b ) Tính theo a độ dài AD
c ) Gọi M là 1 điểm trên đoạn SA , đặt AM=x , vs 0≤x≤a . Tính độ dài đg cao DE của ΔBDM theo a và x . Xác định x để DE lớn nhất , nhỏ nhất