cho hình vuông ABCD, M là trung điểm của cạnh AB, P là giao điểm của ai tia CM và DA
a) chứng minh tứ giác APBC là hình bình hành và tứ giác BCDP là hình thang vuông
b) Chứng minh 2SBCDP=3SAPBC
c) gọi N là trung điểm của BC, Q là giao điểm của DN và CM.
Chứng minh AQ=QB.
2) Cho tam giác ABC vuông tại A (AB < AC). D là điểm trên cạnh AC, các điểm M, N, E lần lượt là trung điểm của các đoạn thẳng BD, BC, CD.
a) Chứng minh rằng DMNE là hình bình hành.
b) Chứng minh rằng AENM là hình thang cân.
c) Xác định vị trí của điểm D để DMNE là hình thoi.
chào pạn bên kia màn hình dễ thương bạn có thể giúp mik bài tập này ko ạ,mik đang cần gấp :<<<
Cho tam giác ABC vuông tại A (AB < AC) . M là trung điểm cạnh BC. Vẽ MD vuông góc với AB tại D và ME vuông góc với AC tại E.
a) Chứng minh tứ giác ADME là hình chữ nhật.
b) Chứng minh E là trung điểm của đoạn thẳng AC và tứ giác CMDE là hình bình hành.
c) Vẽ đường cao AH của tam giác ABC. Chứng minh tứ giác MHDE là hình thang cân
d) Qua A vẽ đường thẳng song song với DH cắt DE tại K. Chứng minh HK vuông góc với AC.
Cho ∆ABC vuông tại A (AB>AC), đường cao AH. Gọi M là trung điểm AB, N là trung điểm BC a) Biết AB = 12cm; BC= 20cm. C/m: MN là đường trung bình của ∆ABC và tính MN. b) Vẽ I đối xứng với N qua M. C/m: INCA là hình bình hành.
Cho hình thang ABCD vuông có A=D=90 độ. Hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại I. Chứng minh
a, tam giác ABD đồng dạng với tam giác DAC. Suy ra AD2=AB. DC
b, Gọi E là hình chiếu vuông góc của B lên cạnh DC và O là trung điểm của BD. Chứng minh điểm A,O,E thẳng hàng
c, Tính tỉ số diện tích hai tam giác AIB và DIC
Cho hình thang ABCD vuông có A=D=90 độ. Hai đường chéo AC và BD vuông góc với nhau và cắt nhau tại I. Chứng minh
a, tam giác ABD đồng dạng với tam giác DAC. Suy ra AD2=AB. DC
b, Gọi E là hình chiếu vuông góc của B lên cạnh DC và O là trung điểm của BD. Chứng minh điểm A,O,E thẳng hàng
c, Tính tỉ số diện tích hai tam giác AIB và DIC
Cho ∆DEF vuông tại D, DF= 2DE.M ,P là trung điểm của EF, DF. a) Chứng minh MP là đường trung bình của ∆DEF. Tính MP biết DE=9cm. b) Q là điểm đối xứng của P qua M. Chứng minh EQFP là hình bình hành. (Giúp em với)
cho hình bình hành ABCD, hai đường chéo AC và BD cắt nhau tại O. Gọi M và N lần lượt là trung điểm của OD và OB.
1, gọi K là giao điểm của đường thẳng AM và CD.từ O kẻ OI song song với AM (I thuộc CD).Chứng minh DK=KI=IC;
2, Chứng minh OI=\(\dfrac{1}{2}\)CN
Bài 1 : Cho tam giác ABC có ba góc nhọn , kẻ hai đường cao BD và CE . Gọi M , N lần lượt là hình chiếu của B,C trên đường thẳng DE
1.Tứ giác BMNC là hình gì?Vì sao
2.Gọi O là trung điểm của đoạn thẳng BC. CMR tam giác DOE là tam giác cân
3.Gọi P là trung điểm của đoạn thẳng DE . CMR \(OP=\dfrac{BM+CN}{2}\)
Bài 2 : Tìm số nguyên tố p để \(p^3+p^2+11p+2\) là số nguyên tố