a:
Ta có: AD//BC
P\(\in\)AD
Do đó: AP//BC
Ta có:BA\(\perp\)AD
P\(\in\)AD
Do đó: BA\(\perp\)PD tại A
Xét ΔMAP vuông tại A và ΔMBC vuông tại B có
MA=MB
\(\widehat{AMP}=\widehat{BMC}\)(hai góc đối đỉnh)
Do đó: ΔMAP=ΔMBC
=>AP=BC
Xét tứ giác APBC có
AP//BC
AP=BC
Do đó: APBC là hình bình hành
Xét tứ giác BCDP có BC//DP
nên BCDP là hình thang
Hình thang BCDP có BC\(\perp\)CD
nên BCDP là hình thang vuông
b: Vì BCDP là hình thang vuông
nên \(S_{BCDP}=\dfrac{1}{2}\left(BC+DP\right)\cdot DC\)
\(=\dfrac{1}{2}\cdot DC\left(BC+DA+AP\right)\)
\(=\dfrac{1}{2}\cdot DC\cdot\left(DC+DC+BC\right)\)
\(=\dfrac{1}{2}\cdot DC\cdot\left(2DC+DC\right)=\dfrac{1}{2}\cdot3DC^2=\dfrac{3}{2}\cdot DC^2\)
Vì AP=BC
mà BC=AD
nên AP=AD
=>A là trung điểm của PD
\(S_{BPAC}=S_{PAB}+S_{ABC}\)
\(=\dfrac{1}{2}\cdot AP\cdot AB+\dfrac{1}{2}\cdot AB\cdot BC\)
\(=\dfrac{1}{2}\cdot BC\cdot AB+\dfrac{1}{2}\cdot BC\cdot AB=BC\cdot AB=AB^2=DC^2\)
=>\(S_{BCDP}=\dfrac{3}{2}\cdot S_{BPAC}\)
=>\(2\cdot S_{BCDP}=3\cdot S_{BPAC}\)