1. mh k rõ đề
2. CD - CA + CB = 0
Ta có Vế Trái <=> CD+AC+CB
<=> (AC+CD)+CB
<=> AD+CB (1)
Vì AD=BC
=> ( 1)<=> BC+CB=0 ( đ p cm)
( vì k có dấu véc tơ nên mh ghi AD là vec tơ AD)
1. mh k rõ đề
2. CD - CA + CB = 0
Ta có Vế Trái <=> CD+AC+CB
<=> (AC+CD)+CB
<=> AD+CB (1)
Vì AD=BC
=> ( 1)<=> BC+CB=0 ( đ p cm)
( vì k có dấu véc tơ nên mh ghi AD là vec tơ AD)
Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm BC và AD.
Tìm tổng của hai vectơ AD và NC
Cho hình bình hành ABCD. Hai điểm M và N lần lượt là trung điểm của BC và AD. Xác định tổng của 2 vectơ NC và vectơ AD
Cho hình bình hành ABCD . Gọi M,N là các điểm thỏa vectơ AM =2/3 AD , vectơ = 1/4BC . Gọi G là trọng tâm của tam giác CMN . Phân tích AG theo AB ,AD
Cho hình bình hành ABCD. Gọi E và F lần lượt là trung điểm của AB và CD. Nối AF và CE, 2 đường này cắt đường chéo BD lần lượt tại M và N. Chứng minh vectơ DM = vectơ MN = vectơ NB.
Cho hình bình hành ABCD. Gọi O là một điểm bất kì trên đường chéo AC. Qua O kẻ các đường thẳng song song với các cạnh của hình bình hành. Các đường thẳng này cắt AB và DC lần lượt tại M và N, cắt AD và BC lần lượt tại E và F. Chứng minh rằng :
a) \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
b) \(\overrightarrow{BD}=\overrightarrow{ME}+\overrightarrow{FN}\)
Cho 2 hình bình hành hình ABCD (tâm O) và ABEF và EH = FG = AD . Chứng minh
1.
DA - DB + DC = 0
2.
MA + MC = MB + MD (M là điểm tùy ý)
3.
OA + OB + OC + OD = AB + DA + CD + BC
4. Tứ giác CDGH là bình hành
cho hình chữ nhật ABCD ,AB =3 ;BC =4 .M,N là trung điểm của BC và CD .Tính a) độ dài vectoAB +vectoAC +vectoAD b)độ dài vecto AM +vecto AN
Cho hình bình hành ABCD tâm I có M là trung điểm DI. Chứng minh vectơ CM= 3CD+CB/4
Cho hình thang ABCD ( AB // CD ) và điểm M nằm trong hình thang ABCD. Kẻ các hình bình hành MAED, MBFC. Chứng minh hai vectơ EF và vectơ AB cùng phương.