Chương 1: MỆNH ĐỀ, TẬP HỢP

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoài Thương

Cho hình bình hành ABCD. Gọi I, J lần lượt là trung điểm BC và CD

a) Chứng minh rằng: \(\overrightarrow{MA}\) + \(\overrightarrow{MC}\) = \(\overrightarrow{MB}\) + \(\overrightarrow{MD}\) với mọi M

b) Chứng minh rằng: 2 ( \(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{JA}+\overrightarrow{DA}\) ) = 3\(\overrightarrow{DB}\)

c) Trên BC lấy điểm H, trên BD lấy điểm K sao cho \(\overrightarrow{BH}\) = \(\frac{1}{5}\overrightarrow{BC}\), \(\overrightarrow{BK}=\frac{1}{6}\overrightarrow{BD}\). Chứng minh rằng A, H, K thẳng hàng

Nguyễn Việt Lâm
23 tháng 2 2020 lúc 10:26

\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}+\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\)

b/

\(2\left(\overrightarrow{JA}+\overrightarrow{AB}+\overrightarrow{DA}+\overrightarrow{AI}\right)=2\left(\overrightarrow{JB}+\overrightarrow{DI}\right)=2\left(\overrightarrow{JD}+\overrightarrow{DB}+\overrightarrow{DB}+\overrightarrow{BI}\right)\)

\(=2\left(2\overrightarrow{DB}+\overrightarrow{IC}+\overrightarrow{CJ}\right)=2\left(2\overrightarrow{DB}+\overrightarrow{IJ}\right)=2\left(2\overrightarrow{DB}+\frac{1}{2}\overrightarrow{BD}\right)=3\overrightarrow{DB}\)c/

\(\overrightarrow{AK}=\overrightarrow{AB}+\overrightarrow{BK}=\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BD}=\overrightarrow{AB}+\frac{1}{6}\left(\overrightarrow{BA}+\overrightarrow{BC}\right)=\frac{5}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BC}\)

\(\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{BH}=\overrightarrow{AB}+\frac{1}{5}\overrightarrow{BC}=\frac{6}{5}\left(\frac{5}{6}\overrightarrow{AB}+\frac{1}{6}\overrightarrow{BC}\right)=\frac{6}{5}\overrightarrow{AK}\)

\(\Rightarrow A;K;H\) thẳng hàng

Khách vãng lai đã xóa

Các câu hỏi tương tự
EDOGAWA CONAN
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
EDOGAWA CONAN
Xem chi tiết
EDOGAWA CONAN
Xem chi tiết
EDOGAWA CONAN
Xem chi tiết
EDOGAWA CONAN
Xem chi tiết
Hải Đăng
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Bé Nhỏ
Xem chi tiết