cho hình bình hành ABCD, gọi I là trung điểm của BC, G là trọng tâm tam giác CDI, Biểu diễn vecto AG qua 2 vecto AB và AD
Cho hình vuông ABCD có độ dài cạnh bằng 6. Gọi M là trung điểm của BC và G là trọng tâm tam giác ADM. Tính độ dài vecto GD
cho hình bình hành ABCD có m thuộc B sao cho MB=2MA, N là trung điểm CD. gọi I và J lần lượt là điểm thỏa mãn vectơ BI = m.vectoBC, vecto AJ=n.vectoAI. khi j là trọng tam của tam giác BMN thì m.n bằng bao nhiêu?
cho hình bình hành ABCD có m thuộc B sao cho MB=2MA, N là trung điểm CD. gọi I và J lần lượt là điểm thỏa mãn vectơ BI = m.vectoBC, vecto AJ=n.vectoAI. khi j là trọng tam của tam giác BMN thì m.n bằng bao nhiêu
cho hình bình hành ABCD có m thuộc B sao cho MB=2MA, N là trung điểm CD. gọi I và J lần lượt là điểm thỏa mãn vectơ BI = m.vectoBC, vecto AJ=n.vectoAI. khi j là trọng tam của tam giác BMN thì m.n bằng bao nhiêu?
Cho △ABC có trọng tâm G và 2 điểm M, N sao cho: AB = 3AM; CD = 2CN
a) Chứng minh: 3 điểm M, N, G thẳng hàng
b) Biểu diễn \(\overrightarrow{AC}\) qua 2 vecto \(\overrightarrow{AG}\) và \(\overrightarrow{AN}\)
c) Gọi k là giao điểm của AC và GN. Tính tỉ số \(\dfrac{KA}{KB}\)
Cho \(\Delta\)ABC có trọng tâm G. Gọi I là điểm đối xứng với B qua G, M là trung điểm của BC. Phân tích \(\overrightarrow{CI}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
Cho 4 diem a b c d .gọi i và j lan lượt là trung điểm cua ab và cd. Chứng minh vecto ac+bd= vecto ad+bc=2vecto ij
Cho ba điểm A,B,C cố định thẳng hàng theo thứ tự đó. Đường tròn tâm O di động luôn đi qua B, C. kẻ qua A các tiếp tuyến AE, AF đến đường tròn tâm O. Gọi E,F là hai tiếp điểm . Gọi I là trung điểm của BC và K là giao của FI với đường tròn tâm O. CMR: véc tơ EK và véc tơ AB cùng phương