Cho \(\Delta ABC\), gọi M là trung điểm của AC và N là điểm đối xứng của B qua M. Xác định các vecto sau:
a, \(\overrightarrow{AB}+\overrightarrow{AN}\)
b, \(\overrightarrow{BA}+\overrightarrow{CN}\)
c, \(\overrightarrow{AB}+\overrightarrow{MC}+\overrightarrow{MN}\)
d, \(\overrightarrow{BA}+\overrightarrow{BC}-\overrightarrow{MN}\)
Can you help me?
please, luv u (tymtymtym)
Cho \(\Delta\)ABC có trọng tâm G. Gọi I là điểm đối xứng với B qua G, M là trung điểm của BC. Phân tích \(\overrightarrow{CI}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
Cho hình bình hành ABCD. Trên BD lấy các điểm G và H sao cho \(DG=GH=HB\)
a) Chứng minh \(\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AG}+\overrightarrow{AH}\).
b) Giả sử AH cắt Bc tại M, AG cắt CD tại N. Chứng minh: \(\overrightarrow{AM}+\overrightarrow{AN}=\dfrac{3}{2}\overrightarrow{AC}\)
1.Cho tam giác ABC,K là trung điểm của AB. Điểm I thoả mãn \(\overrightarrow{IB}\)= 2\(\overrightarrow{IC}\)
a, Biểu diễn \(\overrightarrow{IK}\) theo 2 véc tơ \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b, J thuộc đoạn thẳng AC sao cho JA= 2JC . Chứng minh I,J,K thẳng hàng
làm họ mik vs
Cho tam giác ABC có trọng tâm G. Gọi M thuộc cạnh BC sao cho \(MB=2MC\). Chứng minh:
a) \(\overrightarrow{AB}+2\overrightarrow{AC}=\overrightarrow{3AM}\)
b) \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\)
Cho tam giác ABC và điểm K thỏa mã \(\overrightarrow{KA}\) + 2\(\overrightarrow{KB}\)+3\(\overrightarrow{KC}\)=\(\overrightarrow{0}\),gọi M là giao điểm của CK và AB,tỉ số \(\frac{MB}{MA}\)=
Cho tam giác ABC có trọng tâm G; D và E là các điểm bởi \(\overrightarrow{AG}=\dfrac{1}{3}(\overrightarrow{AB}+\overrightarrow{AC})\)
a) Chứng minh \(\overrightarrow{AG=}\dfrac{1}{3}\overrightarrow{(AB}+\overrightarrow{AC)}\)
b) Tính \(\overrightarrow{DE}\) và \(\overrightarrow{DG}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
c) Chứng minh \(\overrightarrow{DE}\) // \(\overrightarrow{DG}\) . Suy ra D, E, G thẳng hàng
Bài 1:
Cho điểm I thuộc đoạn thẳng AB, I khác A và B. Chứng minh rằng \(\overrightarrow{OI}=\frac{IB}{IA}\overrightarrow{OA}+\frac{IA}{AB}\overrightarrow{OB}\forall O\)
Bài 2:
Cho tam giác ABC, các điểm M,N,P thỏa mãn \(\overrightarrow{BM}=\frac{-1}{3}\overrightarrow{BC},\overrightarrow{AN}=\frac{2}{5}\overrightarrow{AC},\overrightarrow{AP}=x\overrightarrow{AB}.\)Tìm x biết rằng M,N,P thẳng hàng.
Ai giúp mình với chiều mai kiểm tra 2 bài này rồi mà mình nháp mãi chẳng ra.... :<