Cho tứ giác ABCD .Gọi M,N,I,J lần lượt là trung điểm của các cạnh AD,BC,AC và BD.Chứng minh rằng: a) vecto AB+DC =2MN b) vecto AB-DC=2IJ c) vecto NA+ND=BA+CD d) vecto MA+IJ=NB
Cho Δ ABC . Trên tia BC lấy điểm D sao cho 3BD = 2BC (3 lần vecto BD = 2 lần vecto BC ) . Gọi E là điểm thỏa mãn : 3EA+EB+2EC = 0 (vecto)
a. Biểu thị vecto AD , AE theo 2 vecto AB , AC
b. Chứng minh A , E , D thẳng hàng và E là trung điểm AD
c. Trên AC lấy F và đặt FA = kAC (k ϵ R , vecto) . Tìm k để B , E , F thẳng hàng
Cho ∆ABC với vecto MB= –2 vecto MA, vecto NA+ vecto NC= vecto 0. Gọi k là trung điểm MN.
a) Chứng minh 2vecto AB + 3vecto AC= 12 vecto AK.
b) Với P là điểm tùy ý, gọi Q là điểm thỏa vecto PQ= vecto PA +2vecto PB + vecto PC. Chứng minh đường thẳng PQ luôn đi qua điểm cố định.
🆘🆘🆘GIẢI GIÚP MÌNH VỚI 🆘🆘🆘
Cho ∆ABC với vecto MB= –2 vecto MA, vecto NA+ vecto NC= vecto 0. Gọi k là trung điểm MN.
a) Chứng minh 2vecto AB + 3vecto AC= 12 vecto AK.
b) Với P là điểm tùy ý, gọi Q là điểm thỏa vecto PQ= vecto PA +2vecto PB + vecto PC. Chứng minh đường thẳng PQ luôn đi qua điểm cố định.
Bài 1. Cho tam giác ABC , gọi M là điểm trên cạnh BC sao cho MC = 2MB
1) Phân tích vecto AM theo vecto AB, vecto AC
2) Gọi D là trung điểm của AC, phân tích vecto MD theo vecto BA, vecto BC
3) Gọi E là trung điểm của BD . Chứng minh A, E, M thẳng hàng
4) Phân tích vecto BC theo vecto BD, vecto AM
Cho tam giác ABC có trung tuyến AM điểm K thuộc AC sao cho AK=1/3 AC a. Phân tích vecto BK vecto BA và vecto BC b. Gọi I là trung điểm của AM. Chứng minh 3 điểm B, I, K thẳng hàng
Cho 4 điểm A, B, C, D phân biệt bất kì. Gọi I và J lần lượt là trung điểm của AB và CD. Chứng minh rằng:
a. Nếu véc-tơ AB = véc- tơ CD thì véc-tơ AC = véc-tơ BD
b. Véc-tơ AB + véc-tơ BD = Véc-tơ AD + véc-tơ BC = 2.véc-tơ IJ
1. cho tam giác ABC. điểm M trên cạnh BC sao cho MB=2MC. hãy phân tích vecto AM theo hai vecto x=AB, y=AC
2.Cho tam giác ABC có M,D lần lượt là trung điểm của AB,BC và N là điểm trên cạnh AC sao cho vecto AN=\(\dfrac{1}{2}\)vecto NC. Gọi K là trung điểm của MN.
a. CMRvecto AK=\(\dfrac{1}{4}\) vecto AB + \(\dfrac{1}{6}\)vecto AC
b. CMR vecto KD =\(\dfrac{1}{4}\)vecto vecto AB + \(\dfrac{1}{3}\) vecto AC
3. Cho tam giác ABC. trên cạnh AB,AC lấy 2 điển D và E sao cho vecto AD = 2 vecto DB, vecto CE= 3 vecto EA. gọi M là trung điểm DE và I là trung điểm BC. CMR
a. vecto AM =\(\dfrac{1}{3}\) vecto AB+\(\dfrac{1}{8}\)vecto AC
b. vecto MI= \(\dfrac{1}{6}\)vecto AB+ \(\dfrac{3}{8}\)vecto AC
Cho tứ giác ABCD.Gọi E,F lần lượt là trung điểm của các cạnh AB,CD ; G là trung điểm của EF.CM rằng: a) vecto AB+AC+AD=4AG b) vecto GA+GB+GC+GD=0 c)vecto OG=1/4(OA+OB+OC+OD), với O là điểm tùy ý