Cho \(\Delta ABC\)\(\perp\) tại A, đường cao AH. Kẻ Hi\(\perp\)AB, HK\(\perp\)AC
a) Chứng minh AI.AB=AK.AC
b) Biết AH=2cm, BC=5cm. Tính SAIHK
c) Đường phân giác của góc AHB cắt AB tại E, biết \(\dfrac{EB}{AB}=\dfrac{2}{5}\). Tính tỉ số \(\dfrac{BI}{AI}\)
\(cho\Delta abc\) vuông tại A đường cao AH vẽ HK\(\perp\)AB(K\(\in\)AB) câu a cm: AB.AK=HB.HC câu b cm: \(\dfrac{AB^2}{AC^2}=\dfrac{HB}{HC}\) câu c vẽ HE\(\perp\)AC. CM: \(\dfrac{BH}{CE}=\dfrac{AB^3}{AC^3}\) câu d giả sử AB<AC. Lấy M\(\in\)HC; HM=HA. Qua M vẽ 1 đường thẳng \(\perp\) BC cắt AC tại F. CM: \(\dfrac{1}{AH^2}=\dfrac{1}{AF^2}+\dfrac{1}{AC^2}\)
Cho hình vuông ABCD, trên BC lấy I nằm giữa B và C. Đoạn thẳng AI cát đoạn thẳng DC tại K.
a, CM : \(\dfrac{1}{AD^2}=\dfrac{1}{AI^2}+\dfrac{1}{AK^2}\)
b, Đường thẳng vuông góc vs AI tại I cát AD tại H. CM : Tổng \(\dfrac{1}{AI^2}+\dfrac{1}{IH^2}\) ko đổi khi I di chuyển trên BC
1. Cho tam giác ABC vuông tại C, đường cao CK.
a) Tính BC, CK, BK và AK biết AB = 10cm , AC=8cm.
b) Gọi H và I theo thứ tự là hình chiếu của K trên BC và AC. Tứ giác CHKI là hình gì? Vì sao?
c) Chứng minh; \(\text{CB.CH=CA.CI}\)
d) Chứng minh: \(\dfrac{AI}{BH}=\dfrac{AC^3}{BC^3}\)
e) \(AB\cdot BH\cdot AI=CK^3\)
f) Gọi M là hình chiếu của K trên IH. Chứng minh: \(\dfrac{1}{KM^2}=\dfrac{1}{CH^2}+\dfrac{1}{CI^2}\)
2. Cho tam giác ABC cân tại A, các đường cao AH và BK. Kẻ đường thẳng vuông góc với BC tại B cắt tia CA tại D. Chứng minh:
a) \(BD=2AH\)
b) \(\dfrac{1}{BK^2}=\dfrac{1}{DC^2}+\dfrac{1}{4HA^2}\)
1, Cho tam giác APN vuông tại A , đường cao AD. Trenn nửa mặt phẳng bờ AD k chứa điểm P vẽ hình vuông ABCD. Cạnh AN cắt BC tại M chứng mih
a, Tam giác APM cân tại A
b, \(\dfrac{1}{AN^2}+\dfrac{1}{AM^2}\)
2, Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE,HF lần lượt vuông góc với AB, AC Chứng minh
a, \(\dfrac{EB}{FC}\)= (\(\dfrac{AB}{AC}\)) ^3
B, BC.BE,CF=\(AH^3\)
Mọi ng giúp e vs e đg cần gấp tối mai học rồi ạ
1.Cho tam giác ABC vuông tại A có Ah là đường cao. E là hình chiếu H trên AC, D là hình chiếu H trên AB
a) Chứng minh \(\dfrac{DB}{EC}=\left(\dfrac{AB}{AC}\right)^3\)
b) Cho BC = 10cm, AH = 5cm. Tính SADHE ?
c) Kẻ phân giác BI (\(I\in AC\) ) và phân giác CF (\(F\in AB\) ) cắt nhau tại K. Chứng minh BI.CF = 2.BK.CK
2. Chứng minh hệ thức lượng đảo : nếu \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\) hay AB.AC = BC.AH thì tam giác ABC cuông tại A có AH đường và H nằm giữa B và C
Cho \(\Delta ABC\) vuông tại A, \(AH\perp BC\), \(HM\perp AB,HN\perp AC,H\in BC,M\in AB,N\in AC.\) Chứng minh:
a) AM.AB = AN.AC
b) HB.HC = MA.MB + NA.NC
c) \(\dfrac{HB}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
d) \(\dfrac{BM}{CN}=\left(\dfrac{AB}{AC}\right)^3\)
Cho tam giác ABC vuông tại A, AH ⊥ BC, HE ⊥ AB, HF ⊥ AC. Chứng minh rằng:
a. ΔAEF ∼ ΔACB
b. BC2 = 3AH2 + BE2 + CF2
c. \(\dfrac{AB^3}{AC^3}\) = \(\dfrac{BE}{CF}\)
d. AH3 = BC.BE.CF
2. Cho hình vuông ABCD, lấy I thuộc AB, kẻ tia DI cắt đường thẳng BC tại E, kẻ đường thẳng qua D vuông góc DE cắt đường thẳng BC tại F. Chứng minh: \(\dfrac{1}{DI^2}+\dfrac{1}{DE^2}\)không phụ thuộc vào vị trí điểm I.