Bài 3. Cho hình chữ nhật ABCD có tia phân giác góc A đi qua trung điểm E của cạnh CD. Gọi M, N, P theo thứ tự là trung điểm của AD, AE, BC. 1. Chứng minh rằng AB = 2AD và NP = 3NM. 2. Chứng minh rằng AE ⊥ DN. 3. Chứng minh rằng tia phân giác của góc BCD, BE, MN đồng quy
Bài 4. Cho hình chữ nhật ABCD (AB = 2AD), gọi M là trung điểm của AB. Từ M kẻ MN vuông góc CD tại N
a) Chứng minh tứ giác AMND là hình chữ nhật
b) Gọi K là điểm đối xứng với D qua M. Chứng minh B là trung điểm của KC
c) Gọi I là điểm giao của BD và CM. Biết AB = 2AD. Chứng minh NI = 1/3 BD
Cho ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm AB, AC, BC a/ Chứng minh DF // AC và cho biết tứ giác ADFC là hình gì, vì sao ? b/ Chứng minh ADFE là hình chữ nhật. So sánh AF và DE c/ Gọi K là điểm đối xứng của F qua tâm E. Chứng minh AFCK là hình thoi.
3 cho hình chữ nhật ABCD có AB=2AD,gọi E,F theo thứ tự trung điểm của các cạnh AB,CD .gọi M là giao điểm của Af DE,N là giao điểm của BF và CE.
a tứ giác ADFE là hình gì vì sao
b chứng minh EMFN là hình vuông
Cho tứ giác ABCD . Gọi E, F,G,H lần lược là trung điểm của AB, BC, CD, AD Bé vịt nhỏ A) chứng minh rằng : tứ giác EFGH là hình bình hành b) cho AC vuông góc với BD . Chứng minh EFGH là hình chữ nhật . ( Vẽ hình , ghi giả thiết , kết luận đc 0.5 ₫
Cho tam giác ABC vuông tại A. Gọi D,E,F lần lượt là trung điểm của các cạnh BC, AB, AC. Chứng minh rằng:
a. DE//AC, DF//AB.
b. Tứ giác AEDF là hình chữ nhật.
c. Gọi M và N lần lượt là các điểm đối xứng với D qua AB và AC. Chứng minh M đối xúng với N qua A.
Cho tâm giác ABC vuông tại A, đường cao AH. Gọi M, N theo thứ tự là các chân đường vuông góc kẻ từ H đến AB, BC . Gọi Ở là giao điểm của AH và MN, K là trung điểm của CH
a) chứng minh tứ giác ÂM HN là bình chữ nhật
b) tính góc MNK
c) chứng minh BO vuông góc với AK
Cho tam giác abc có góc a = 90° , đường cao ah . Gọi E,F là trung điểm của AB và AC . Lấy gau điểm I,K lần lượt đối xứng với H qua E và F (hay E và F là trung điểm của IH và IK) . Chứng minh rằng : a) Các tứ giác AHBI và AHCK là các hình chữ nhật b) góc EHF=90° c) Ba điểm I,A,K thẳng hàng
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân đường vuông góc kẻ từ H đến AB và AC. Chứng minh AH=DE. Gọi I, K theo thứ tự là trung điểm của HB và HC. chứng minh tứ giác IDKE là hình thang vuông. Tính độ dài đường trung bình của hình thang DIKE biết : AB=6cm, AC=8cm.