- Để phương trình có nghiệm duy nhất :
<=> \(\frac{m-1}{2m}\ne\frac{-1}{-1}\ne1\)
<=> \(m-1\ne2m\)
<=> \(m\ne-1\)
- Ta có : \(\left\{{}\begin{matrix}\left(m-1\right)x-y=-1\\2mx-y=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\\frac{2m\left(y-1\right)}{m-1}-y=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\\frac{2m\left(y-1\right)}{m-1}-\frac{y\left(m-1\right)}{m-1}=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\2m\left(y-1\right)-y\left(m-1\right)=m-1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\2my-2m-my+y-m+1=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\y=\frac{3m-1}{m+1}\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=\frac{\frac{3m-1}{m+1}-1}{m-1}=\frac{\frac{3m-1-m-1}{m+1}}{m-1}=\frac{\frac{2m-2}{m+1}}{m-1}=\frac{2\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}=\frac{2}{m+1}\\y=\frac{3m-1}{m+1}\end{matrix}\right.\)
Ta có : \(\left(\frac{2}{m+1}\right)^2+\left(\frac{3m-1}{m+1}\right)^2< 5\)
=> \(\frac{4+9m^2-6m+1-5m^2-10m-5}{m^2+2m+1}< 0\)
=> \(\frac{4m^2-16m}{m^2+2m+1}< 0\)
=> \(4m\left(m-4\right)< 0\)
=> \(\left\{{}\begin{matrix}m>0\\m< 4\end{matrix}\right.\) or \(\left\{{}\begin{matrix}m< 0\\m>4\end{matrix}\right.\)
=> \(0< m< 4\) or \(4< m< 0\left(l\right)\)
Vậy ....