Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ

cho hệ phương trình \(\left\{{}\begin{matrix}\left(m-1\right)x-y=-1\\2mx-y=1\end{matrix}\right.\)

tìm m để hpt có nghiệm duy nhất (x,y) thỏa mãn x2+y2<5

Nguyễn Ngọc Lộc
9 tháng 7 2020 lúc 21:27

- Để phương trình có nghiệm duy nhất :

<=> \(\frac{m-1}{2m}\ne\frac{-1}{-1}\ne1\)

<=> \(m-1\ne2m\)

<=> \(m\ne-1\)

- Ta có : \(\left\{{}\begin{matrix}\left(m-1\right)x-y=-1\\2mx-y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\\frac{2m\left(y-1\right)}{m-1}-y=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\\frac{2m\left(y-1\right)}{m-1}-\frac{y\left(m-1\right)}{m-1}=1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\2m\left(y-1\right)-y\left(m-1\right)=m-1\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\2my-2m-my+y-m+1=0\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{y-1}{m-1}\\y=\frac{3m-1}{m+1}\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}x=\frac{\frac{3m-1}{m+1}-1}{m-1}=\frac{\frac{3m-1-m-1}{m+1}}{m-1}=\frac{\frac{2m-2}{m+1}}{m-1}=\frac{2\left(m-1\right)}{\left(m+1\right)\left(m-1\right)}=\frac{2}{m+1}\\y=\frac{3m-1}{m+1}\end{matrix}\right.\)

Ta có : \(\left(\frac{2}{m+1}\right)^2+\left(\frac{3m-1}{m+1}\right)^2< 5\)

=> \(\frac{4+9m^2-6m+1-5m^2-10m-5}{m^2+2m+1}< 0\)

=> \(\frac{4m^2-16m}{m^2+2m+1}< 0\)

=> \(4m\left(m-4\right)< 0\)

=> \(\left\{{}\begin{matrix}m>0\\m< 4\end{matrix}\right.\) or \(\left\{{}\begin{matrix}m< 0\\m>4\end{matrix}\right.\)

=> \(0< m< 4\) or \(4< m< 0\left(l\right)\)

Vậy ....


Các câu hỏi tương tự
Ctuu
Xem chi tiết
Ngưu Kim
Xem chi tiết
Ngưu Kim
Xem chi tiết
Hải Yến Lê
Xem chi tiết
thu dinh
Xem chi tiết
Thanh Hân
Xem chi tiết
phạm kim liên
Xem chi tiết
Nguyễn Thanh Hải
Xem chi tiết
Ngưu Kim
Xem chi tiết