Hình:
~~~~
a/ Xét \(\Delta AHB\) và \(\Delta DAB\) có:
\(\widehat{BHA}=\widehat{DAB}\left(=90^o\right)\)
\(\widehat{B_1}:chung\)
=> \(\Delta AHB\) ~ \(\Delta DAB\left(g.g\right)\)(1)
Cmtt có: \(\Delta DAB\sim\Delta BCD\left(g.g\right)\)(2)
Từ (1), (2) => \(\Delta AHB\sim\Delta BCD\)(t/c bắc cầu)
b/ Cmtt như ý a ta có: \(\Delta ADH\sim\Delta BDA\left(g.g\right)\)
=> \(\dfrac{AD}{BD}=\dfrac{DH}{AD}\)=> AD2 = DH . DB (đpcm)
c/ +) Áp dụng pytago vào tam giác ABD vuông tại A có:
\(DB^2=AB^2+AD^2=8^2+6^2=100\) => DB = 10cm
Có: \(AD^2=DH\cdot DB\) (ý b)
hay \(6^2=DH\cdot10\Rightarrow DH=\dfrac{36}{10}=3,6\)cm
+) Áp dụng pytago vào \(\Delta ADH\left(\widehat{DHA}=90^o\right)\) có:
\(AD^2=DH^2+AH^2\Rightarrow AH=\sqrt{AD^2-DH^2}\)
\(=\sqrt{6^2-3,6^2}=4,8cm\)
Vậy......
a) Vì ABCD là HCN (gt) => \(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}\) (= 90 độ) và AB // CD
=> \(\widehat{ABD}=\widehat{BDC}\)
xét tam giác AHB và tam giác BCD có:
\(\widehat{ABD}=\widehat{BDC}\) (cmt)
\(\widehat{AHB}=\widehat{BCD}\) (= 90 độ)
=> tam giác AHB \(\sim\) tam giác BCD(gg)
b) xét tam giác AHD và tam giác BAD có:
\(\widehat{AHD}=\widehat{BAD}\) (= 90 độ)
\(\widehat{ADB}\) chung
=> tam giác AHD \(\sim\) tam giác BAD(gg)
=> \(\dfrac{AD}{BD}=\dfrac{HD}{AD}\) (các cạnh t/ứ tỉ lệ)
=> AD . AD = BD . HD => \(AD^2\) = BD . HD
c) Vì ABCD là HCN(gt) => AD = BC
Mà BC = 6 cm => AD = 6 cm
xét tam giác AED vuông tại A
Theo đ/lí Pytago:
\(BD^2\) = \(AD^2+AB^2\)
=> \(BD^2\)= 36 + 64
=> \(BD^2\)= 100
=> BD = 10 cm
VÌ \(AD^2\) = DH . DB (câu b) => DH = \(\dfrac{AD^2}{DB}\)
=> DH = \(\dfrac{36}{10}\)= 3,6 cm
vì tam giác AHB \(\sim\) tam giác BCD (câu a)
=> \(\dfrac{AH}{BC}=\dfrac{AB}{BD}\) (các canh t/ứ tỉ lệ)
=> AH = \(\dfrac{BC.AB}{BD}\)= \(\dfrac{6.8}{10}\)= 4,8 cm
a) Xét 2 tam giác AHB và tam giác DAB có:
góc H= góc A = 90 độ
góc B chung
=> tam giác AHB ~ tam giác DAB(g.g)(1)
Ta lại xét tam giác DAB và tam giác BCD có
AD=BC, AB=CD(vì là hình chữ nhật)
góc A= góc C=90 độ
=> tam giác DAB ~ tam giác BCD(c.g.c)(2)
Từ 1 và 2 => tam giác AHB ~ tam giác BCD
b) Xét tam giác ADH và tam giác BDA
có : góc AHD = góc A (=90 độ)
góc D : chung
Do đó : tam giác ADH đồng dạng với tam giác BDA (g.g)
=> AD/BD = DH/AD
=> AD^2 =DH . DB ( đpcm )
c) Áp dụng định lí Pytago vào tam giác ABD:
BD^2 = BA^2 + AD^2
BD^2 = 8^2 + 6^2
BD = 10 (cm)
Vì tam giác ADH đồng dạng với tam giác BDA
=> AD/BD = AH/AB = DH/DA hay 6/10 = AH/8 = DH/6
=> DH = 6.6/10 = 3,6 (cm)
=> AH = 6.8/10 = 4,8 (cm)
a) Xét \(\Delta\)AHB và \(\Delta\)BCD có:
\(\widehat{AHB}\) = \(\widehat{C}\) (= 90o)
\(\widehat{ABD}\) = \(\widehat{BDC}\) ( so le trong)
\(\Rightarrow\)\(\Delta\)AHB\(\sim\) \(\Delta\)BCD (g.g)
b) Xét \(\Delta\)ADH và \(\Delta\)BDA có:
\(\widehat{AHD}\) = \(\widehat{A}\) (= 90o)
\(\widehat{D}\) : chung
\(\Rightarrow\Delta\)ADH\(\sim\Delta\)BDA (g.g)
=> \(\dfrac{AD}{BD}\) = \(\dfrac{DH}{AD}\)
=> AD2 = DH . DB
c. Áp dụng định lí Py-ta-go vào \(\Delta\)ABD:
BD2 = BA2 + AD2 = 82 + 62 = 64+36 = 100(cm)
BD\(=\sqrt{100}\) = 10 (cm)
Vì \(\Delta\)ADH \(\sim\Delta\)BDA
=> \(\dfrac{AD}{BD}\)= \(\dfrac{AH}{AB}\) = \(\dfrac{DH}{AD}\)
\(\Rightarrow\) \(\dfrac{6}{10}\) = \(\dfrac{AH}{8}\) = \(\dfrac{DH}{6}\)
=> DH = 6.\(\dfrac{6}{10}\) = 3,6 (cm)
=> AH = 6.\(\dfrac{8}{10}\) = 4,8 (cm)