Cho hbh ABCD. Gọi I, K lần lượt là trung điểm của BC, AD a, cm tứ giác ABIK là hbh b, gọi M là giao điểm của AI và BK, N là giao điểm của CK và DI. Chứng minh BC=2MN c, Khi AC=BD và AB=3cm,BC=4cm.Tính diện tích hbh ABCD d, cm AN,DM,IK cùng đi qua 1 điểm G và tính độ dài GK với độ dài AB,BC đã cho ở trên
Cho hình bình hành ABCD, gọi O là giao điểm của hai đường chéo, E và F thứ tự là trung điểm của OD và OB.
1) Chứng minh: Tứ giác AECF là hình bình hành.
2) Tia AE cắt CD tại K, gọi H là trung điểm của KC. Chứng minh OH // CF.
3) Chứng minh : CF = 3EK
cho hình bình hành ABCD có góc D = 60 độ , CD = 2BC . gọi E và F theo thứ tự là trung điểm của AB và CD
a) cm DEBF là hình bình hành
b) tứ giác AEFD là hình gì ? vì sao ?
c) gọi M là giao điểm của DE và AF , N là giao điểm của CE và BF . c/m EMFN là hình chữ nhật
Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự tại Mvà N. Chứng minh rằng:
a) Tứ giác AKCI là hình bình hành.
b) DM = MN = NB.
c) Các đoạn thẳng AC, BD, IK cùng đi qua một điểm.
Câu 3: Cho tam giác ABC vuông tại A, trung tuyến AD. Vẽ từ D các đường thẳng song song với AB và AC, chúng cắt cạnh AC, AB lần lượt tại F và F.
a, Tứ giác AEDF là hình gì? Vì sao?
b, Chứng minh: A đối xứng với C qua F.
c,Cho AB = 6cm, AC = 8cm, tính độ dài đường chéo EF của tứ giác AEDF.
Bài 20: Cho tam giác ABC vuông tại A, D là trung điểm BC. Gọi M là điểm đối xứng của D qua AB, E là giao điểm của DM và AB. Gọi N là điểm đối xứng của D qua AC, F là giao điểm của DN và AC. a/ Tứ giác AEDF là hình gì ? Vì sao ? b/ Các tứ giác ADBM, ADCN là hình gì ? Vì sao ? c/ Chứng minh M đối xứng với N qua A.d/ Tìm điều kiện của của ∆ABC để tứ giác AEDF là hình vuông?
Cho hình bình hành ABCD có AB = 2AD. Gọi E và F theo thứ tự là trung điểm của AB và CD.
a) Các tứ giác AEFD, AECF là hình gì ? Vì sao ?
b) Gọi M là giao điểm của AF và DE, gọi N là giao điểm của BF và CE. Chứng minh rằng tứ giác EMFN là hình chữ nhật ?
c) Hình bình hành ABCD nói trên có thêm điều kiện gì thì EMFN là hình vuông ?
Cho tam giác ABC vuông tại A, điểm D là trung điểm của BC. Gọi M là điểm đối xứng với D qua AB, E là giao điểm của MD và AB. Gọi N là điểm đối xứng với D qua AC, F là giao điểm của DN và AC.
a. Tứ giác AEDF là hình gì? Vì sao?
b. Các tứ giác ADBM, ADCN là hình gì? Vì sao?
c. Chứng minh rằng: M đối xứng với N qua A.
d. Tam giác vuông ABC có điều kiện gì thì tứ giác AEDF là hình vuông?