Cho hbh ABCD. Gọi I, K lần lượt là trung điểm của BC, AD a, cm tứ giác ABIK là hbh b, gọi M là giao điểm của AI và BK, N là giao điểm của CK và DI. Chứng minh BC=2MN c, Khi AC=BD và AB=3cm,BC=4cm.Tính diện tích hbh ABCD d, cm AN,DM,IK cùng đi qua 1 điểm G và tính độ dài GK với độ dài AB,BC đã cho ở trên
Cho hbh ABCD . Gọi O là giao điểm của AC và BD . M ,N là trung điểm của OD , OB . Gọi E là giao điểm của AM và CD. F là giao điểm của CN và AB
a) CM tứ giác AMCN là hbh
b)tứ giác AECF là hình j
c) CM E và F đx vs nha qua O
d) CM EC = 2DE
cho hcn ABCD , gọi E,F lần lượt là trung điểm của AB,CD. CE cắt BD tại P ,AF cắt BD tại Q A) c/m BP=PQ=QD B) c/m tứ giác APCQ là hbh c) tính Sabcd theo a bt Sbcp+a
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi E , F, G, H lần lượt là các trung điểm của các cạnh AB, BC, CD, DA.
a) Tứ giác EFGH là hình gì.
b) Biết Ac = 10cm, BD = 8cm. Tính diện tích tứ giác EFGH.
c) Cần có điều kiện gì để tứ giác EFGH là hình vuông
Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Câu 1: Cho hình bình hành ABCD (AD < AB), O là giao điểm hai đường chéo AC, BD. Gọi E, F lần lượt là hình chiếu của A và C trên BD.
a, Chứng minh tứ giác AECF là hình bình hành.
b, Gọi I là điểm đối xứng của A qua BD. Chứng minh EO là đường trung bình của tam giác AIC.
c, Chứng minh tứ giác CIDB là hình thang cân.
Câu 2: Cho hình bình hành ABCD . Gọi I,K theo thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI, CK theo thứ tự tại Mvà N. Chứng minh rằng:
a) Tứ giác AKCI là hình bình hành.
b) DM = MN = NB.
c) Các đoạn thẳng AC, BD, IK cùng đi qua một điểm.
Câu 3: Cho tam giác ABC vuông tại A, trung tuyến AD. Vẽ từ D các đường thẳng song song với AB và AC, chúng cắt cạnh AC, AB lần lượt tại F và F.
a, Tứ giác AEDF là hình gì? Vì sao?
b, Chứng minh: A đối xứng với C qua F.
c,Cho AB = 6cm, AC = 8cm, tính độ dài đường chéo EF của tứ giác AEDF.
GT: Cho ΔABC
D∈AB,E∈ACsao cho BD=CE
M, N, I, K lần lượt là trung điểm của DE, BC, BE, CD
KL: a) Tứ giác MINK là hình gì
b) Gọi G, H là giao điểm của IK với AB, AC. CMR ΔABCcân
cho hình bình hành abcd có ad = 2ab. Gọi e và f lần lượt là trung điểm của ab và cd.
a)Chứng minh tứ giác aefc là hình bình hành.
b) tứ giác aefd là hình gi? Tại sao?.
c) bd cắt af và ce lần lượt tại h, k. Chứng minh rằng dh=hk=kb.
d) Gọi o là giao điểm của ef và hk. Chứng minh h đối xứng với k qua o
cho hình bình hành ABCD có góc D = 60 độ , CD = 2BC . gọi E và F theo thứ tự là trung điểm của AB và CD
a) cm DEBF là hình bình hành
b) tứ giác AEFD là hình gì ? vì sao ?
c) gọi M là giao điểm của DE và AF , N là giao điểm của CE và BF . c/m EMFN là hình chữ nhật