a) Để (d)//(d1) thì \(\left\{{}\begin{matrix}m^2-2=2\\m-1\ne-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=4\\m\ne-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{2;-2\right\}\\m\ne-2\end{matrix}\right.\Leftrightarrow m=2\)
b) Để (d) trùng với (d2) thì
\(\left\{{}\begin{matrix}m^2-2=-1\\m-1=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2=1\\m=-1\end{matrix}\right.\Leftrightarrow m=-1\)
c) Để (d) cắt (d3) thì
\(m^2-2\ne3\)
\(\Leftrightarrow m^2\ne5\)
\(\Leftrightarrow m\notin\left\{\sqrt{5};-\sqrt{5}\right\}\)
Để (d) cắt (d3) tại một điểm có hoành độ x=-1 thì
Thay x=-1 vào hàm số \(y=3x-2\), ta được:
\(y=3\cdot\left(-1\right)-2=-3-2=-5\)
Thay x=-1 và y=-5 vào hàm số \(y=\left(m^2-2\right)x+m-1\), ta được:
\(\left(m^2-2\right)\cdot\left(-1\right)+m-1=-5\)
\(\Leftrightarrow2-m^2+m-1=-5\)
\(\Leftrightarrow-m^2+m-1+5=0\)
\(\Leftrightarrow-m^2+m+4=0\)
\(\Leftrightarrow m^2-m-4=0\)
\(\Leftrightarrow m^2-2\cdot m\cdot\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{17}{4}=0\)
\(\Leftrightarrow\left(m-\dfrac{1}{2}\right)^2=\dfrac{17}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}m-\dfrac{1}{2}=\dfrac{\sqrt{17}}{2}\\m-\dfrac{1}{2}=-\dfrac{\sqrt{17}}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{17}+1}{2}\left(nhận\right)\\m=\dfrac{1-\sqrt{17}}{2}\left(nhận\right)\end{matrix}\right.\)
d) Để (d) vuông góc với (d4) thì \(\left(m^2-2\right)\cdot\dfrac{4}{5}=-1\)
\(\Leftrightarrow m^2-2=-1:\dfrac{4}{5}=-1\cdot\dfrac{5}{4}=\dfrac{-5}{4}\)
\(\Leftrightarrow m^2=-\dfrac{5}{4}+2=\dfrac{-5}{4}+\dfrac{8}{4}=\dfrac{3}{4}\)
hay \(m\in\left\{\dfrac{\sqrt{3}}{2};-\dfrac{\sqrt{3}}{2}\right\}\)