Cho hàm số \(y=x^4-2m\left(m+1\right)x^2+m^2\) với m là tham số thực.
a) Tìm m để đồ thị hàm số trên có 3 cực trị tạo thành 3 đỉnh của tâm giác vuông
b) Tìm m để đồ thị hàm số trên có 3 cực trị A, B, C sao cho OA = BC; trong đó O là gốc tọa độ, A là điểm cực trị thuộc trục tung, B và C là hai điểm cực trị còn lại
Y=x^4-2(m+1)x^2+m^2 a)tìm m để hàm số có 3 cực trị tạo thành 1 tam giác nhận gốc toạ độ o là trọng tâm b)tìm m để hàm số có 3 cực trị tạo thành 3 đỉnh tam giác đều c)tìm m để hàm số có 3 cực trị tạo thành tam giác có bán kính đường tròn ngoại tiếp bằng 1 d) tìm m để hàm số có 3 cực trị và khoảng cách giữa 2 điểm cực tiểu là 5
Tìm m để đồ thị hàm số y = x4 - m.x2 + 4.x + m có 3 điểm cực trị A , B , C sao cho gốc tọa độ là trọng tâm tam giác ABC.
Các bạn giúp mình bài tập này với !
Cho hàm số : \(y=x^3+3mx^2+2\left(1\right)\), với \(m\) là tham số thực. Tìm m để đồ thì hàm số (1) có 2 điểm cực trị A,B sao cho diện tích tam giác OAB bằng 2. (O là gốc tọa độ)
Cho hàm số \(y=x^4-2mx^2+m-1\left(1\right)\), với m là tham số thực.
Xác định m để hàm số (1) có 3 điểm cực trị, đồng thời các điểm cực trị của đồ thị tạo thành một tam giác biết :
a) Có bán kính đường tròn ngoại tiếp bằng 1
b) Có trực tâm là gốc tọa độ
c) Có trọng tâm là gốc tọa độ
giúp mình với
1. cho hàm số y= \(ax^3_{ }+bx^2+cx+d\) . nếu đò thị h/s có 2 điểm cực trị là gốc tọa độ O và điểm a(2;-4) . viết pt của h/s
2. với giá trị nào của tham số m thì đồ thị h/s \(y=-x^3+3mx+1\) có 2 điểm cực trị A,B sao cho tam giác OAB vuông tại o , vs O là gốc tọa độ
Tìm tất cả các g ía trị thực của tham số m để đồ thị của hàm số y=-x^3+3mx+1 có 2 điểm cực trị A,B sao cho tam giác OAB vuông tại O (với O là gốc tọa độ).
A.m=1
B.m=-1/2
C.m=3/2
D.m=1/2
giúp mình nha !!! cám ơn !!! <3 <3
Tìm m để hàm số y= x3 -3(m +1)x2+12mx-3m+4 có hai điểm cực trị A, B sao cho tma giác ABC có trọng tâm là gốc tọa độ với C(-1;\(\dfrac{-9}{2}\) )
Cho hàm số \(y=\frac{1}{4}x^4-\left(3m+1\right)x^2+2\left(m+1\right)\), m là tham số . Tìm m để đồ thị hàm số đã cho có 3 điểm cực trị lập thành 1 tam giác có trọng tâm là gốc tọa độ