Xét pt hoành độ gđ của (P) và (d) có:
\(2x^2=2x+m\)
\(\Leftrightarrow2x^2-2x-m=0\) (1)
Để (d) cắt (P) tại hai điểm nằm trong góc phần tư thứ 1
<=> pt (1) có hai nghiệm pb dương (không cần xét tung độ bởi tung độ luôn dương)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4-4.2.\left(-m\right)>0\\1>0\left(lđ\right)\\-\dfrac{m}{2}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{1}{2}\\m< 0\end{matrix}\right.\)
\(\Rightarrow\)\(-\dfrac{1}{2}< m< 0\)