Do giao điểm nằm trên trục hoành nên tung độ thỏa mãn:
\(y=-0+1\Rightarrow y=1\)
\(\Rightarrow\) tọa độ giao điểm là (0;1)
Thay vào pt d:
\(1=\left(2m-1\right).0+m+2\Leftrightarrow m=-1\)
Do giao điểm nằm trên trục hoành nên tung độ thỏa mãn:
\(y=-0+1\Rightarrow y=1\)
\(\Rightarrow\) tọa độ giao điểm là (0;1)
Thay vào pt d:
\(1=\left(2m-1\right).0+m+2\Leftrightarrow m=-1\)
Cho hàm số y=x^2/2. (P)
a) vẽ đồ thị (P)
b) Tìm giá trị của m để đường thẳng d: y=2x-m cắt đồ thị (P)tại điểm có hoành độ bằng 2
Cho đồ thị hàm số y = \(\dfrac{1}{2}x^2\) có đồ thị (P): y = x - 2 m. Vẽ đồ thị (P) tìm tất cả các giá trị của M sao cho (d) cắt (P) tại điểm có hoành độ bằng -1.
Cho đồ thị hàm số y = \(\dfrac{1}{2}x^2\) có đồ thị (P): y = x - 2 m. Vẽ đồ thị (P) tìm tất cả các giá trị của M sao cho (d) cắt (P) tại điểm có hoành độ bằng -1.
ll)BT
B1:Cho hàm số y=(m+5)x+2m-10
a)Với giá trị nào của m thì y là hàm số bậc nhất
b)Với giá trị nào của m thì y là hàm số đồng biến
c)Tìm m để đồ thị hàm số đi qua điểm A(2;3)
d)Tìm m để đồ thị cắt trục tung tại diểm có tung độ = 9
e)Tìm m để đồ thị đi qua điểm 10 trên trục hoành
f)Tìm m để đồ thị hàm số song song với đồ thị hàm số y=2x-1
g)Chúng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
h)Tìm m để Đường thẳng d qua gốc tọa độ
Help
Cho parabol(P):y= x^2 và đường thẳng(d):y=x+2
a)Vẽ đồ thị 2 hàm số trên,trên cùng 1 hệ trục toạ độ
b) Xác định toạ độ giao điểm A,B của 2 đồ thị trên
c) Cho điểm M thuộc Parabol(P) có hoành độ là m nhỏ thoả mãn
-1 ≤m ≤2. Chứng minh Diện tích MAB ≤ 27/8
a) Vẽ đồ thị (P) của hàm số y = -(1/4) x2.
b) Tìm m để (D) : y = 2x – m cắt (P) tại điểm có hoành độ bằng -2.
Trên mặt phẳng toạ độ Oxy, cho đường thẳng (d) : y = mx - m +1 và parabol (P) : y = x^2
a, Tìm m để (d) cắt trục tung tại điểm có tung độ bằng 2
b, Tìm m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 , x2 thoả mãn x1 + 3x2 = 7
Cho hai hàm số : (P) y = \(x^2\) và (d) y = 2mx + 2m +1 với m là tham số
Tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ x1,x2 sao cho
\(\sqrt{x1+x2}\) + \(\sqrt{3+x1.x2}\) = 2m + 1
Số giá trị nguyên của m để đồ thị hàm số y=(2-m^2)x^2 nằm phía trên trục hoành là
A: 1
B: 2
C:3
D: 4