Chương 2: HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trang Nguyen

 

Cho hàm số \(y=-x^3+(m-1)x^2-m+2 (*) \)

a. Với giá trị nào của m để hàm số (*) có cức đại và cực tiểu.

b. Với giá trị nào của m để đồ thị hàm số (*) cắt trục Ox tại 3 điểm phân biệt.

c. Tìm điểm cố định mà đồ thị hàm số (*) đi qua.

 

Akai Haruma
13 tháng 12 2016 lúc 22:46

a) Hàm có cực đại, cực tiểu khi mà $y'=-3x^2+2(m-1)x=x[2(m-1)-3x]$ có ít nhất hai nghiệm phân biệt $\Leftrightarrow 2(m-1)-3x=0$ có một nghiệm khác $0$ hay $m\neq 1$

b) Đồ thị hàm số $(\star)$ cắt trục hoành tại ba điểm phân biệt khi mà phương trình $y=-x^3+(m-1)x^2-m+2=0$ có $3$ nghiệm phân biệt

$\Leftrightarrow (1-x)[x^2+x(2-m)+(2-m)]=0$ có ba nghiệm phân biệt

$\Leftrightarrow x^2+x(2-m)+(2-m)=0$ có hai nghiệm phân biệt khác $1$

Do đó ta cần có $\left\{\begin{matrix}1+2-m+2-m=5-2m\neq 0\\ \Delta =(2-m)^2-4(2-m)>0\end{matrix}\right.$

Vậy để thỏa mãn đề bài thì $m\neq \frac{5}{2}$ và $m>2$ hoặc $m<-2$

c) Gọi điểm cố định mà đồ thị hàm số đi qua là $(x_0,y_0)$

$y_0=-x_0^3+(m-1)x_0^2-m+2$ $\forall m\in\mathbb{R}$

$\Leftrightarrow m(x_0^2-1)-(x_0^3+x_0^2+y_0-2)=0$ $\forall m\in\mathbb{R}$

$\Rightarrow\left{\begin{matrix}x_0^2=1\\ x_0^3+x_0^2+y_02=0\end{matrix}\right.\begin{bmatrix}(x_0,y_0)=(1;0)\\ (x_0,y_0)=(-1;2)\end{bmatrix}$

 

Trần Huỳnh Gia Huy
16 tháng 2 2022 lúc 9:00

\(_x1\) x 9\(\sqrt[]{c}12\) = 7

Mik làm phép tính như thế vì bạn đăng "cức đại" trên câu hỏi

Trần Huỳnh Gia Huy
18 tháng 2 2022 lúc 9:23

+ P x 72,u2 + (-n8 ) = \(83 + (((((62\) =\(\beta23A\)


Các câu hỏi tương tự
AllesKlar
Xem chi tiết
AllesKlar
Xem chi tiết
kòi
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Park 24
Xem chi tiết
Kim Tuyền
Xem chi tiết
Pham Tien Dat
Xem chi tiết
Kim Tuyền
Xem chi tiết
Nguyễn Minh Khôi
Xem chi tiết