Chương II - Hàm số bậc nhất

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
hưng đỗ

cho HÀM số y= (m-2)x +m+ 3 coa đồ thị là đường thẳng d

a) chứng minh d luôn đi qua một điểm cố định với mọi giá trị của tham số m

b) tìm m để d cắt Ox, Oy tạo thành tam giác có diện tích bằng 2 

 

Nguyễn Đức Trí
23 tháng 9 2023 lúc 7:46

a) \(\left(d\right):y=\left(m-2\right)x+m+3\)

Gọi \(A\left(x_o;y_o\right)\) là điểm cố định mà \(\left(d\right)\) đi qua, nên ta có :

\(y_o=\left(m-2\right)x_o+m+3,\forall m\in R\)

\(\Leftrightarrow y_o=mx_o-2x_o+m+3,\forall m\in R\)

\(\Leftrightarrow mx_o+m+2x_o+y_o-3=0,\forall m\in R\)

\(\Leftrightarrow\left(x_o+1\right)m+\left(2x_o+y_o-3\right)=0,\forall m\in R\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o+1=0\\2x_o+y_o-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_o=-1\\y_o=5\end{matrix}\right.\) \(\Rightarrow A\left(-1;5\right)\)

Vậy Với mọi m, đường thẳng \(\left(d\right)\) luôn đi qua điểm cố định \(A\left(-1;5\right)\)

b) Gọi \(\left\{{}\begin{matrix}\left(d\right)\cap Ox=A\\\left(d\right)\cap Oy=B\end{matrix}\right.\)

Tọa độ điểm \(A\) thỏa mãn

\(\Leftrightarrow\left\{{}\begin{matrix}y=0\\y=\left(m-2\right)x+m+3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2-m}\\y=0\end{matrix}\right.\)

\(\Rightarrow A\left(\dfrac{m+3}{2-m};0\right)\)

\(\Rightarrow OA=\sqrt[]{\left(\dfrac{m+3}{2-m}\right)^2}=\left|\dfrac{m+3}{2-m}\right|\)

Tọa độ điểm \(B\) thỏa mãn

\(\Leftrightarrow\left\{{}\begin{matrix}y=\left(m-2\right)x+m+3\\x=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=m+3\end{matrix}\right.\) \(\Rightarrow B\left(0;m+3\right)\)

\(\Rightarrow OB=\sqrt[]{\left(m+3\right)^2}=\left|m+3\right|\)

\(S_{OAB}=2\Leftrightarrow\dfrac{1}{2}OA.OB=2\)

\(\Leftrightarrow\left|\dfrac{m+3}{2-m}\right|.\left|m+3\right|=4\)

\(\Leftrightarrow\left(m+3\right)^2=4\left|2-m\right|\left(1\right)\)

\(TH1:2-m>0\Leftrightarrow m< 2\)

\(\left(1\right)\Leftrightarrow\left(m+3\right)^2=4\left(2-m\right)\)

\(\Leftrightarrow m^2+6m+9=8-4m\)

\(\Leftrightarrow m^2+10m+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-5+2\sqrt[]{6}\left(tm\right)\\m=-5-2\sqrt[]{6}\left(tm\right)\end{matrix}\right.\)

\(TH2:2-m< 0\Leftrightarrow m>2\)

\(\left(1\right)\Leftrightarrow\left(m+3\right)^2=4\left(m-2\right)\)

\(\Leftrightarrow m^2+6m+9=4m-8\)

\(\Leftrightarrow m^2+2m+17=0\)

\(\Leftrightarrow\) Phương trình vô nghiệm

Vậy \(\left[{}\begin{matrix}m=-5+2\sqrt[]{6}\\m=-5-2\sqrt[]{6}\end{matrix}\right.\) thỏa mãn đề bài


Các câu hỏi tương tự
Chan
Xem chi tiết
bí ẩn
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Ctuu
Xem chi tiết
Nguyễn TQ
Xem chi tiết
Chan
Xem chi tiết
nguyễn lương thiện
Xem chi tiết
Anh Quynh
Xem chi tiết