Giả sử \(x_1< x_2< 0\) ta có: \(f\left(x_1\right)-f\left(x_2\right)=\left(3-2m\right)x_1^2-\left(3-2m\right)x_2^2\\ =\left(3-2m\right)\left(x_1-x_2\right)\left(x_1+x_2\right)\)
Vì hàm số đồng biến nên \(f\left(x_1\right)< f\left(x_2\right)\Rightarrow\left(3-2m\right)\left(x_1-x_2\right)\left(x_1+x_2\right)< 0\)
\(x_1< x_2< 0\Rightarrow\left\{{}\begin{matrix}x_1-x_2< 0\\x_1+x_2< 0\end{matrix}\right.\Rightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)>0}\)Vậy \(3-2m< 0\Leftrightarrow m>\dfrac{3}{2}\)