Giả sử hai hàm số \(y=f\left(x\right)\) và \(y=f\left(x+\dfrac{1}{2}\right)\) đều liên tục trên đoạn \(\left[0;1\right]\) và \(f\left(0\right)=f\left(1\right)\).
Chứng minh rằng phương trình \(f\left(x\right)-f\left(x+\dfrac{1}{2}\right)=0\) luôn có nghiệm trong đoạn \(\left[0;\dfrac{1}{2}\right]\) ?
Cho hàm số f(x) = \(\left\{{}\begin{matrix}x^2sin\dfrac{1}{x}\left(x\ne0\right)\\0\left(x=0\right)\end{matrix}\right.\)
a, Tính \(g\left(x\right)=\lim\limits_{t\rightarrow0}=\dfrac{f\left(x+t\right)-f\left(x-2t\right)}{2t}\) (x thuộc R)
b, Khảo sát sự tồn tại của g'(x) với x thuộc R
cho hàm số f(x) thoả mãn \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-2}{x-3}=\dfrac{1}{4}\)
tính \(I=\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-2}{\left(x-3\right)\left(\sqrt{5f\left(x\right)+6}+1\right)}\)
Giúp em với ạ em cảm ơn nhìu!!!!!
Cho hai hàm số \(f\left(x\right)=\dfrac{1-x^2}{x^2}\) và \(g\left(x\right)=\dfrac{x^3+x^2+1}{x^2}\)
a) Tính \(\lim\limits_{x\rightarrow0}f\left(x\right);\lim\limits_{x\rightarrow0}g\left(x\right);\lim\limits_{x\rightarrow+\infty}f\left(x\right);\lim\limits_{x\rightarrow+\infty}g\left(x\right)\)
b) Hai đường cong sau đây (h.60) là đồ thị của hai hàm số đã cho. Từ kết quả câu a), hãy xác định xem đường con nào là đồ thị của mỗi hàm số đó ?
1. Chứng minh phương trình
\(\left(m^2+1\right)x^3-2m^2x^2-4x+m^2+1=0\) có đúng 3 nghiệm phân biệt.
2. Cho phương trình :
\(x^3cos^3x+m\left(x.cosx-1\right)\left(x.cosx+2\right)=0\)
CMR phương trình luôn có nghiệm với mọi m
3. Cho phương trình
\(\left(m^2-m+2021\right)x^3-\left(2m^2-2n+4040\right)x^2-4x+m^2-m+2021=0\)
CMR phương trình có 3 nghiệm phân biệt với mọi giá trị của tham số m
Bài 1 :
Tìm các giá trị của m để hàm số \(f\left(x\right)=\left\{{}\begin{matrix}\frac{\sqrt{1-x}-\sqrt{1+x}}{x}khix< 0\\m+\frac{1-x}{1+x}khix\ge0\end{matrix}\right.\) liên tục tại x = 0 ?
Bài 2 : Chứng minh rằng phương trình \(4x^4+2x^2-x-3=0\) có ít nhất 2 nghiệm trong khoảng (-1;1)
Xác định một hàm số \(y=f\left(x\right)\) thỏa mãn đồng thời các điều kiện sau :
a) \(f\left(x\right)\) xác định trên R\{1}
b) \(\lim\limits_{x\rightarrow1}f\left(x\right)=+\infty;\lim\limits_{x\rightarrow+\infty}f\left(x\right)=2;\lim\limits_{x\rightarrow-\infty}f\left(x\right)=2\)
Xác định một hàm số \(y=f\left(x\right)\) thỏa mãn đồng thời các điều kiện sau :
a) \(f\left(x\right)\) xác định trên R
b) \(y=f\left(x\right)\) liên tục trên \(\left(-\infty;0\right)\) và trên [ \(0;+\infty\)) nhưng gián đoạn tại x = 0
Chứng minh rằng phương trình \(x^5-3x^4+5x-2=0\) có ít nhất 3 nghiệm nằm trong khoảng \(\left(-2;5\right)\) ?