Cho hàm số \(y=f\left(x\right)\) liên tục trên đoạn \(\left[-1;3\right]\) thoả mãn \(\int\limits^1_0f\left(x\right)dx=3\) và \(\int\limits^3_1f\left(x\right)dx=6\) . Tính \(\int\limits^3_{-1}f\left(\left|x\right|\right)dx\)
1) Cho hàm số f(x) liên tục trên R+ thỏa mãn f '(x) \(\ge x+\dfrac{1}{x},\forall x\in R^+\) và f(1) = 1. CM : \(f\left(2\right)\ge\dfrac{5}{2}+ln2\).
2) Cho hàm số y = f(x) > 0 xác định, có đạo hàm trên đoạn [0; 1] và thỏa mãn : \(g\left(x\right)=1+2018\int\limits^x_0f\left(t\right)dt\) , g(x) = f2 (x). Tính \(\int\limits^1_0\sqrt{g\left(x\right)}dx\).
3) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0; 1] thỏa mãn f(1) = 1; \(\int\limits^1_0\left[f'\left(x\right)\right]^2dx=9\) và \(\int\limits^1_0x^3f\left(x\right)dx=\dfrac{1}{2}\). Tính tích phân \(\int\limits^1_0f\left(x\right)dx\).
Cho hàm số f(x) liên tục trên \([-\Pi;\Pi]\)
Chứng minh: \(\int\limits^{\Pi}_0x.f\left(sinx\right)dx=\dfrac{\Pi}{2}\int\limits^{\Pi}_0f\left(sinx\right)dx\)
Cho hàm số \(y=f\left(x\right)\) có đạo hàm liên tục trên đoạn [1;2] thoả mãn \(f\left(1\right)=2\) và \(f\left(x\right)-\left(x+1\right)f'\left(x\right)=2xf^2\left(x\right)\), ∀x ϵ [1;2]. Giá trị của \(\int_1^2f\left(x\right)dx\) bằng
A. \(1+\ln2\) B. \(1-\ln2\) C. \(\dfrac{1}{2}-\ln2\) D. \(\dfrac{1}{2}+\ln2\)
Gọi F(x) là nguyên hàm của \(f\left(x\right)=2x+\sqrt{x}\), có \(F\left(0\right)=0\). Tính \(\int\limits^1_0F\left(x\right).f\left(.\right)+f’\left(x+1\right)dx\)
cho f(x) là hàm số liên tục trên R;\(\int\limits^2_0f\left(x\right)dx=-5,\int\limits^3_1f\left(2x\right)dx=10\) tính giá trị của \(\int\limits^2_0f\left(3x\right)dx\)
Câu 1. Cho hàm số chẵn y=f (x) liên tục trên R và \(\int\limits^1_{-1}\dfrac{f\left(2x\right)}{1+2^x}dx=8\).Tính \(\int_0^2f\left(x\right)dx\)
Câu 2:Cho hàm số y=f (x) có đạo hàm và liên tục trên [0;1]và thỏa f(0)=1.\(\int_0^1\left[f'\left(x\right)\left[f^2\left(x\right)\right]+1\right]dx=2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\).Tính\(\int_0^1\left[f^3\left(x\right)\right]dx\).
Cho \(\int\limits^2_1f\left(x\right)dx\) = -3 . Giá trị của \(\int\limits^2_1\left[3f\left(x\right)-2x\right]dx\) bằng
Câu 1: Cho hàm số \(f\left(x\right)\) liên tục trên tập xác định thoả mản \(\int\limits^1_{-1}f\left(x^2\right)dx=2\) và \(\frac{f\left(x\right)}{f’\left(x\right)}=-x\) . Khi này tính \(\int\limits^e_1f\left(x\right)dx\)
a) -1
b) 0
c) 2
d) Đáp án khác
Câu 1: Gọi nguyên hàm của hàm số \(\int\frac{sin\left(x\right)}{sin\left(x\right)+cos\left(x\right)}dx\) có dạng \(ax+bln\left|sin\left(x\right)+cos\left(x\right)\right|+C\) (a,b là các số hữu tỉ) và nguyên hàm của hàm số \(\int cos^2\left(x\right)dx\) có dạng \(cx+\frac{1}{2d}sin\left(dx\right)+C\) ( c,d là các số hữu tỉ) . Khi này tính \(I=2a-2b+2c+d\) bằng
a) 4
b) 5
c) \(\frac{3}{2}\)
d) \(\frac{25}{4}\)
Câu 2. Cho hàm số \(f\left(x\right)=sin\left(ln\left(x\right)\right)\) và \(g\left(x\right)=cos\left(ln\left(x\right)\right)\)
a) Tích nguyên hàm của \(\int\left[f\left(x\right)-g\left(x\right)\right]dx\)
b) Biết \(\int\limits^{e^{\pi}}_1f\left(x\right)dx=\frac{1}{a}\left(e^b+c\right)\) . Tính \(\left(a-c\right)^2\cdot b\)
Câu 3: Cho hàm số \(f\left(x\right)\) có đạo hàm liên tục trên đoạn \(\left[0;1\right]\) thoả mản điều kiện \(f\left(2020x+2019\right)=2020f\left(x\right),\forall x\in R.\) Tính tích phân \(\int\limits^1_03\left[f\left(x\right)\right]^2dx\) bằng
a) \(\frac{7}{3}\left[f\left(1\right)\right]^2\)
b) \(\frac{3}{7}\left(f\left(1\right)\right)^2\)
c) \(7\left[f\left(-1\right)\right]^2\)
d\(\frac{3}{7}\left[f\left(-1\right)\right]^2\)