Cho hàm số \(y=f\left(x\right)\) liên tục trên đoạn \(\left[-1;3\right]\) thoả mãn \(\int\limits^1_0f\left(x\right)dx=3\) và \(\int\limits^3_1f\left(x\right)dx=6\) . Tính \(\int\limits^3_{-1}f\left(\left|x\right|\right)dx\)
Cho hàm số \(f\left(x\right)\) liên tục trên tập xác định và thoả mản \(\int\limits^{\frac{\pi}{8}}_0f\left(2x\right)dx=\frac{1}{2\sqrt{2}}\) và \(f\left(x\right)^2+f’\left(x\right)^2=1\). Khi này tính \(f\left(f\left(\frac{\pi}{2}\right).\pi\right)\) bằng:
a) 0
b) -1
c) 1
d) 2
Cho hàm số f(x) liên tục trên \([-\Pi;\Pi]\)
Chứng minh: \(\int\limits^{\Pi}_0x.f\left(sinx\right)dx=\dfrac{\Pi}{2}\int\limits^{\Pi}_0f\left(sinx\right)dx\)
1) Cho hàm số f(x) liên tục trên R+ thỏa mãn f '(x) \(\ge x+\dfrac{1}{x},\forall x\in R^+\) và f(1) = 1. CM : \(f\left(2\right)\ge\dfrac{5}{2}+ln2\).
2) Cho hàm số y = f(x) > 0 xác định, có đạo hàm trên đoạn [0; 1] và thỏa mãn : \(g\left(x\right)=1+2018\int\limits^x_0f\left(t\right)dt\) , g(x) = f2 (x). Tính \(\int\limits^1_0\sqrt{g\left(x\right)}dx\).
3) Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0; 1] thỏa mãn f(1) = 1; \(\int\limits^1_0\left[f'\left(x\right)\right]^2dx=9\) và \(\int\limits^1_0x^3f\left(x\right)dx=\dfrac{1}{2}\). Tính tích phân \(\int\limits^1_0f\left(x\right)dx\).
Câu 1. Cho hàm số chẵn y=f (x) liên tục trên R và \(\int\limits^1_{-1}\dfrac{f\left(2x\right)}{1+2^x}dx=8\).Tính \(\int_0^2f\left(x\right)dx\)
Câu 2:Cho hàm số y=f (x) có đạo hàm và liên tục trên [0;1]và thỏa f(0)=1.\(\int_0^1\left[f'\left(x\right)\left[f^2\left(x\right)\right]+1\right]dx=2\int_0^1\sqrt{f'\left(x\right)}f\left(x\right)dx\).Tính\(\int_0^1\left[f^3\left(x\right)\right]dx\).
Cho \(f\left(x\right)\) liên tục trên R và thoả mản \(2x+f\left(2x\right)+f’\left(x\right)=f\left(f\left(x\right)\right)+f\left(x^{-1}\right)+f\left(x\right)\), \(\int\limits^2_1f\left(x\right)dx=3\), \(f\left(0\right)=0\) và \(f\left(3\right)=6\). Tính \(f\left(2\right)+f\left(1\right)\) bằng:
a) 3
b) 4
c) 6
d) Đáp án khác
Câu 1: Họ nguyên hàm của hàm số \(\int\frac{3\sqrt{ln\left(x\right)+1}}{x}dx\) có dạng \(ln\left(\left(xe\right)^a\right).\sqrt{ln\left(xe\right)+b}\) với \(a,b\) là các số thực. Tính \(a^2+b^2\)
a) 1
b) 2
c) 4
d) 5
Câu 2: Cho hai số thực \(a,b\) \(\left(a< b\right)\) thoả mản \(\int\limits^b_a\frac{1}{\sqrt{x}}dx=2\) và \(a^2+b^2=17\). Tính \(a^b+b^{-a}\)
a) \(\frac{2}{3}\)
b) \(1\)
c) \(0\)
d) \(\frac{5}{4}\)
Câu 3: Cho hàm số \(f\left(x\right)\) xác định trên \(R\). Và thoả mản \(f\left(\sqrt{2x}\right)=f’\left(x\right)\) và \(\int\limits^e_1f\left(\sqrt{ln\left(x\right)}\right)dx=3\) . Tính \(\int\limits^{\pi}_02.f\left(cos\left(2x\right)\right)dx\) bằng
a) \(0\)
b) \(2\pi\)
c) \(3\pi\)
d) \(9,425\)
Câu 4: Họ nguyên hàm của hàm số \(\int\frac{3x+a}{x^2+4}dx\) có dạng \(\frac{3}{2}ln\left(x^2+4\right)+arctan\left(\frac{x}{2}\right)+C,C\in R\). Tính \(\int\limits^{\frac{e}{a+2}}_1ln\left(x\right)dx\) bằng
a) 1
b) \(-\frac{ln\left(2^e\right)}{2}+1\)
c) \(1-\frac{ln\left(3^e\right)}{3}\)
d) Đáp án khác
Câu 5: Gọi \(F\left(x\right)\) là một nguyên hàm của hàm số \(f\left(x\right)\). Biết \(f”\left(x\right)=-\frac{1}{4x\sqrt{x}},f’\left(2\right)=2+\frac{1}{2\sqrt{2}}\), \(f\left(4\right)=10\) và \(F\left(1\right)=1+\frac{2}{3}\). Tính \(\int\limits^1_0F\left(x\right)dx\) bằng
a) \(\frac{5}{3}\)
b) \(\frac{3}{4}\)
c) \(\frac{3}{5}\)
d) \(\frac{4}{3}\)
Câu 41: Cho hàm số \(f\left(x\right)\) liên tục trên R và thoả mãn \(f\left(0\right)=0\) và \(f\left(x\right)f’\left(\frac{1}{x^2+1}\right)\left(x^2+1\right)=2x^4+4x^3+4x^2+8x\). Tính \(\int\limits^3_0f\left(x\right)dx\)
a) 0 b) 18 c) \(\frac{117}{4}\) d) 15
Câu 1: Gọi nguyên hàm của hàm số \(\int\frac{sin\left(x\right)}{sin\left(x\right)+cos\left(x\right)}dx\) có dạng \(ax+bln\left|sin\left(x\right)+cos\left(x\right)\right|+C\) (a,b là các số hữu tỉ) và nguyên hàm của hàm số \(\int cos^2\left(x\right)dx\) có dạng \(cx+\frac{1}{2d}sin\left(dx\right)+C\) ( c,d là các số hữu tỉ) . Khi này tính \(I=2a-2b+2c+d\) bằng
a) 4
b) 5
c) \(\frac{3}{2}\)
d) \(\frac{25}{4}\)
Câu 2. Cho hàm số \(f\left(x\right)=sin\left(ln\left(x\right)\right)\) và \(g\left(x\right)=cos\left(ln\left(x\right)\right)\)
a) Tích nguyên hàm của \(\int\left[f\left(x\right)-g\left(x\right)\right]dx\)
b) Biết \(\int\limits^{e^{\pi}}_1f\left(x\right)dx=\frac{1}{a}\left(e^b+c\right)\) . Tính \(\left(a-c\right)^2\cdot b\)
Câu 3: Cho hàm số \(f\left(x\right)\) có đạo hàm liên tục trên đoạn \(\left[0;1\right]\) thoả mản điều kiện \(f\left(2020x+2019\right)=2020f\left(x\right),\forall x\in R.\) Tính tích phân \(\int\limits^1_03\left[f\left(x\right)\right]^2dx\) bằng
a) \(\frac{7}{3}\left[f\left(1\right)\right]^2\)
b) \(\frac{3}{7}\left(f\left(1\right)\right)^2\)
c) \(7\left[f\left(-1\right)\right]^2\)
d\(\frac{3}{7}\left[f\left(-1\right)\right]^2\)