Bài 3: Phép đối xứng trục

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Hoàng Minh Đức

Cho hai điểm B,C cố định nằm trên đường tròn (O;R) và điểm A thay đổi trên đường tròn đó. Hãy dùng phép đối xứng trục để chứng minh rằng trực tâm H nằm trên một đường tròn cố định.

Ngô Võ Thùy Nhung
14 tháng 4 2016 lúc 12:46

- Kẻ AA’ ( là đường kính của (O) ) suy ra BHCA’ là hình bình hành , cho nên BC đi qua trung điểm I của A’H .

- A’H’ song song với BC ( vì cùng vuông góc với AH )

- Từ đó suy ra BC là đường trung bình của tam giác AHH’ – Có nghĩa là BC đi qua trung điểm của HH’ . Mặt khác AH vuông góc với BC suy ra BC là trục đối xứng của HH’ , hay H và H’ đối xứng nhau qua BC.

Bùi Giao Hòa
14 tháng 4 2016 lúc 12:49

Gọi H là giao ba đường cao của tam giác ABC . Kéo dài AH cắt (O;R) tại H’ . Nối CH’

- Chứng minh IH=IH’ . Thật vậy

          Ta có : \(\widehat{A}=\widehat{BCH'}\) ( Góc nội tiếp chẵn cung BH’ ).(1)

Mặt khác : \(\begin{cases}CH\perp AB\\CI\perp AH'\end{cases}\)\(\Rightarrow\widehat{A}=\widehat{BCH}\) (2)

Từ (1) và (2) suy ra : \(\widehat{BCH}=\widehat{BCH'}\)

Chứng tỏ tam giác HCH’ là tam giác cân . Do BC vuông góc với HH’ , chứng tỏ BC là đường trung trực của HH’ . Hay H và H’ đối xứng nhau qua BC . Cho nên khi A chạy trên đường tròn (O;R) thì H’ cũng chạy trên (O;R) và H sẽ chạy trên đường tròn (O’;R) là ảnh của đường tròn (O;R) qua phép đối xứng trục BC

- Giới hạn quỹ tích : Khi A trùng với B và C thì tam giác ABC suy biến thành đường thẳng . Vì thế trên đường tròn (O’;R) bỏ đi 2 điểm là ảnh của B,C 


Các câu hỏi tương tự
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Đờ Thị Mờ
Xem chi tiết
Ngan Kim
Xem chi tiết
Phan Nhật Linh
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Future In Your Hand ( Ne...
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết