Cho (O) và điểm A nằm ngoài đường tròn. Kẻ dây BC bất kì đi qua A
a, Xác định tâm D của đường tròn đi qua điểm A và tiếp xúc với (O) tại B.
Xác định tâm E của đường tròn đi qua điểm A và tiếp xúc với (O) tại C.
b, CMR DE luôn đi qua một điểm cố định khi dây BC quay quanh điểm A. Tìm tập hợp các điểm M là giao điểm thứ 2 của (D) và (E)
Cho đường tròn (O,R) và đường thẳng d cố định, d không có điểm chung với đường tròn. Gọi M là điểm thuộc đường thẳng d. Qua M kẻ hai tiếp tuyến MA,MB với đường tròn (A,B là các tiếp điểm). Từ O kẻ OH vuông góc với đường thẳng d (H thuộc d). Nối A với B, AB cắt OH tại K và cắt OM taị I. Gọi E là tâm đường tròn nội tiếp Δ MAB. Giả sử R = 6 cm và góc AMB = 60 độ. Tính bán kính đường tròn nội tiếp Δ MAB
Cho đường tròn (O;R) và dây cung BC không đi qua tâm. Gọi A là điểm chính giữa của cung nhỏ BC. Góc nội tiếp quay quanh điểm A và có số đo không đổi sao cho E,F khác phía với điểm A so với BC;AF và AE cắt đường thẳng BC lần lượt tại M và N. Lấy điểm D sao cho tứ giác MNED là hình bình hành.
a. Chứng minh MNEF là tứ giác nội tiếp. b. Gọi I là tâm đường tròn ngoại tiếp tam giác MDF. Chứng minh rằng khi góc nội tiếp EAF quay quanh điểm A thì I chuyển động trên một đường thẳng cố định. c. Khi EAF= 60và BC=R, tính theo R độ dài nhỏ nhất của đoạn OICho (O;R) và một đường thẳng d cố định cắt đường tròn (O) tại C va D, trên đường thẳng lấy điểm M sao cho D nằm giữa M và C. Qua điểm M vẽ các tiếp tuyến MA, MB với đường tròn (A,B là các tiếp điểm). Gọi H là trung điểm của CD, OM cắt AB tại E. Chứng minh rằng :
a. Bốn điểm O,B,M,H cùng nằm trên một đường tròn
b. ME ⊥ AB
c. Tích OE.Om không đổi và đường thẳng AB luôn đi qua điểm cố định khi điểm M di động trên đường thẳng d
cho đường tròn (O) và BC là đây cung cố định nhỏ hơn đường kính .Lấy điểm A trên cung lớn BC sao cho Δ ABC nhọn và AB<AC .Gọi AD,BE,CF là các đường cao của tam giác ABC . Gọi M là giao điểm của EF và BC
a, cm : MB.MC=ME.MF
b, đường thẳng đi qua D và song song với EF , cắt AB và AC lần lượi tại P và Q .
cm : Δ DEF là tam giác cân tại D
Cho đường tròn tâm (O) đường kính AB:M là điểm thuộc (O)(M khác Avà B).Gọi C là điểm đối xứng với A qua M.Đường thẳng qua A và song song với MB cắt (O) lần nữa tại D.Gọi E là điểm đối xứng với A qua D
CMR
a)Góc MBD vuông và C,B,E thẳng hàng
b) Xác định vị trí M thuộc (O) để CE là tiếp tuyến của (O)
Gọi I là trung điểm của dây cung AB không đi qua tâm của (O; R) . Qua I vẽ dây CD
a) chứng tỏ CD>=AB. Tìm độ dài nhỏ nhất , lớn nhất của các dây quay quanh I
b) cho R=5cm; OI=4cm. Tính độ dài dây cung ngắn nhất qua I
c) chứng tỏ: góc OAI > góc ODI
M.n giúp em bài này với
Cho đường tròn (O) và (O') cắt nhau tại A và B một đường thẳng d đi qua A cắt O và O' tại M và N ( khác A ). Gọi E và F lần lượt là trung điểm của dây AM và AN
a, Chứng minh rằng MN bằng 2 lần EF
b, Xác định vị trí của D để đoạn thẳng MN lớn nhất
Cho tam giác ABC vuông tại A ( AB < AC ). Vẽ đường tròn tâm O đường kính BC
a. Xác định vị trí tương đối của điểm A với đường tròn (O)
b. Tiếp tuyến tại A và B của đường tròn O cắt nhau tại D. Qua O kẻ đường thẳng vuông góc với OD cắt AD tại E, cắt AC tại I. Xác định vị trí tương đối của EC với đường tròn O
c. CM rằng: EC2 = EA.ED - OI.OE