\(A=\left(\frac{15-\sqrt{x}+2\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\right).\frac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(A=\frac{\sqrt{x}+5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\frac{\sqrt{x}-5}{\sqrt{x}+1}=\frac{1}{\sqrt{x}+1}\)
\(M=\frac{1}{\sqrt{x}+1}-\frac{1-\sqrt{x}}{\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}+1}=1-\frac{1}{\sqrt{x}+1}\)
Để M nguyên\(\Leftrightarrow\sqrt{x}+1\inƯ_{\left(-1\right)}=\left\{-1;1\right\}\)
\(\Rightarrow\sqrt{x}+1=1\Leftrightarrow x=0\)