Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ

cho hai biểu thức A=\(\frac{2}{\sqrt{x}-2}\) và B=\(\frac{\sqrt{x}}{x+1}-\frac{4\sqrt{x}+2}{x\sqrt{x}-2x+\sqrt{x}-2}\) với x≥0 và x≠4

1, tính giá trị của A khi x=\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

2, rút gọn biểu thức P=A+B

3, tìm giá trị của x để biểu thức P đạt giá trị lớn nhất

Nguyễn Lê Phước Thịnh
28 tháng 6 2020 lúc 9:25

1:

ĐKXĐ: x≠4

Ta có: \(x=\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

\(=\sqrt{3-2\cdot\sqrt{3}\cdot2+4}+\sqrt{3+2\cdot\sqrt{3}\cdot2+4}\)

\(=\sqrt{\left(\sqrt{3}-2\right)^2}+\sqrt{\left(\sqrt{3}+2\right)^2}\)

\(=\left|\sqrt{3}-2\right|+\left|\sqrt{3}+2\right|\)

\(=2-\sqrt{3}+\sqrt{3}+2\)

\(=4\)(ktm ĐKXĐ)

Vậy: Khi x=4 thì A không có giá trị

2: Ta có: P=A+B

\(\Leftrightarrow P=\frac{2}{\sqrt{x}-2}+\frac{\sqrt{x}}{x+1}-\frac{4\sqrt{x}+2}{x\sqrt{x}-2x+\sqrt{x}-2}\)

\(\Leftrightarrow P=\frac{2\left(x+1\right)}{\left(\sqrt{x}-2\right)\left(x+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(x+1\right)\left(\sqrt{x}-2\right)}-\frac{4\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(x+1\right)}\)

\(\Leftrightarrow P=\frac{2x+2+x-2\sqrt{x}-4\sqrt{x}-2}{\left(x+1\right)\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow P=\frac{3x-6\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-2\right)}=\frac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(x+1\right)\left(\sqrt{x}-2\right)}\)

\(\Leftrightarrow P=\frac{3\sqrt{x}}{x+1}\)


Các câu hỏi tương tự
Lê Hương Giang
Xem chi tiết
kietdeptrai
Xem chi tiết
Đặng Tuyết Đoan
Xem chi tiết
kietdeptrai
Xem chi tiết
Lê Hương Giang
Xem chi tiết
phạm kim liên
Xem chi tiết
Hải Yến Lê
Xem chi tiết
nguyễn thu hằng
Xem chi tiết
illumina
Xem chi tiết