a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
góc AOM=góc BOM
Do đó: ΔOAM=ΔOBM
=>MA=MB và OA=OB
b: OA=OB
MA=MB
Do đó: OM la trung trực của AB
a: Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
góc AOM=góc BOM
Do đó: ΔOAM=ΔOBM
=>MA=MB và OA=OB
b: OA=OB
MA=MB
Do đó: OM la trung trực của AB
Cho góc xOy khác góc bẹt ,Ot là tia phân giác của góc đó.Qua điểm H thuộc tia Ot kẻ đường vuông góc với Ot,nó cắt Ox và Oy theo thứ tự ở A và B
a)Chứng minh H là chung điểm của AB
b)lấy điểm C thuộc tia Ot,chứng minh rằng ACO = BCO
Cho góc xOy khác góc bẹt, Ot là tia phân giác của góc đó. Qua điểm H thuộc tia Ot, kẻ đường vuông góc với Ot, nó cắt Ox và Oy theo thứ tự ở A và B
a) Chứng minh rằng OA = OB
b) Lấy điểm C thuộc tia Ot, chứng minh rằng CA = CB và \(\widehat{OAC}=\widehat{OBC}\)
Cho góc nhọn xoy và oz là tia phân giác của xoy.Qua điểm A thuộc tia õ, vẽ đường thẳng song song với oy cắt oz tại M.Qua M kẻ đường thẳng song song với ox cắt tại oy tại B.
A)Từ M vẽ MH vuông góc Ox(H thuộcOx),Mk vuông góc Oy(K thuộc Oy).Chứng minh MH=Mk.
B)Chứng minh Om vuông góc HK
Bài 1: Cho góc nhọn xOy. Gọi C là một điểm thuộc tia phân giác của góc xOy, kẻ CA vuông
góc với Ox (A Ox), kẻ CB vuông góc với Oy (B Oy).
a) Chứng minh: CA = CB và tam giác OAB là tam giác cân.
b) Chứng minh OC vuông góc với AB
c) Gọi D là giao điểm của BC và Ox, E là giao điểm của AC và Oy. So sánh các độ dài CD
và CE.
d) Cho biết OC = 13cm, OA = 12cm. Tính độ dài AC.
Cho tam giác ABC vuông tại A có M là trung điểm của BC. Trên tia đối của tia MA lấy điểm N sao cho MN=MA. a) Chứng minh: AB = NC , tam giác CAN vuông b) Chứng minh: AM = 1/2 BC c) Kẻ MK vuông góc với BN , MI vuông góc với AC . CM I, M , K Thẳng hàng
Cho góc nhọn xoy trên ox lấy điểm A, B sao cho 0<OA<OB. Trên tia Oy lấy 2 điểm C, D
sao cho OA=OC, OB=OD. Gọi M là giao điểm của AD và BC, N là giao điểm của ON và BD. Chứng minh rằng:
a) △OAD bằng △OCB
b) △ADM bằng △CDM
c) OM là tia phân giác của góc xOy
d) ON ⊥ BD
Cho đoạn thẳng AB có M là trung điêm. Trên cùng một nửa mặt phẳng bờ AB vẽ hai tia Ax, By vuông góc với AB. Gọi C là điểm trên tia Ax. Từ M kẻ đường thẳng vuông góc với CM, căt By tại D. Gọi K là giao điểm của CM và BD. Chứng minh:
a) Tam giác ACM = Tam giác BKM (câu này mik bt r nha, giải giúp mik câu b thôi ạk)
b) CD= AC+BD
cho góc xOy nhọn, trên tia Ox lấy điểm A, trên tia Oy lấy điểm B. Qua A kẻ tia Am // Oy, qua B kẻ tia Bn// Ox. Am cắt Bn tại C. Chứng minh tam giác OAC = tam giác CBO