a) Xét ΔOAI và ΔOBI có
OA=OB(gt)
\(\widehat{AOI}=\widehat{BOI}\)(OI là tia phân giác của \(\widehat{AOB}\))
OI chung
Do đó: ΔOAI=ΔOBI(c-g-c)
b) Xét ΔOHA và ΔOHB có
OA=OB(gt)
\(\widehat{AOH}=\widehat{BOH}\)(OH là tia phân giác của \(\widehat{AOB}\))
OH chungDo đó: ΔOHA=ΔOHB(c-g-c)
nên AH=BH(hai cạnh tương ứng)
mà A,H,B thẳng hàng(gt)
nên H là trung điểm của AB(đpcm)
a) Xét tam giác OAI và tam giác OBI:
^AOI = ^BOI (Oz là tia phân giác của góc xOy)
OA = OB (gt)
OI chung
=> Tam giác OAI = Tam giác OBI (c - g - c)
b) Xét tam giác AOB có: OA = OB (gt)
=> Tam giác AOB cân tại A
Lại có: OH là đường phân giác của góc xOy (H \(\in Oz\))
=> OH là đường trung tuyến (TC các đường trong tam giác cân)
=> H là trung điểm của AB