Cách dựng:
– Dựng tia phân giác At của góc xAy
– Dựng đường thẳng Bz qua B và vuông góc với tia Ax
– Giao điểm O của At và Bz là tâm của đường tròn cần dựng.
– Dựng đường tròn tâm O, bán kính R = OB, ta được đường tròn cần dựng.
Cách dựng:
– Dựng tia phân giác At của góc xAy
– Dựng đường thẳng Bz qua B và vuông góc với tia Ax
– Giao điểm O của At và Bz là tâm của đường tròn cần dựng.
– Dựng đường tròn tâm O, bán kính R = OB, ta được đường tròn cần dựng.
Cho góc xAy khác góc bẹt. Tâm của các đường tròn tiếp xúc với hai cạnh của góc xAy nằm trên đường nào ?
Cho góc \(xOy\) khác góc bẹt, điểm A nằm trên tia \(Ox\). Dựng đường tròn (I) đi qua A và tiếp xúc với hai cạnh của góc \(xOy\) ?
(ko cần vẽ hình)Cho nửa đường tròn (O) đường kính AB. Kẻ các tiếp tuyến Ax, By của nửa đường tròn. Qua điểm M bất kỳ thuộc nửa đường tròn (M khác A và B) kẻ tiếp tuyến với nửa đường tròn cắt Ax, By thứ tự tại C và D. Chứng minh rằng:
1) góc COD = \(90^o\)
2) CD = AC + BD
3) Tích AC.BD không đổi khi M di chuyến trên nửa đường tròn
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N.
a. Tính số đo góc MON
b. Chứng minh rằng MN = AM + BN
c. Chứng minh rằng AM.BN = R2 (R là bán kính của nửa đường tròn)
giúp với ạ
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax,By là các tia vuông góc với AB (Ax,By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N.
a) Tìm vị trí của điểm C để chu vi AMNB nhỏ nhất
b) Xác định vị trí của điểm M và N để chu vi AMNB=14cm ( Biết AB=4cm)
Cho đường tròn (O:R) đường kính AB. Kẻ tiếp tuyến Ax, lấy P trên Ax (AP>R), Từ P a) Chứng minh bốn điểm A, P, M, D cùng thuộc một đường tròn. kẻ tiếp tuyến PM với (O). b) Chứng minh BM/OP c) Đường thẳng vuông góc với AB tại O cắt tỉa BM tại N. Chứng minh tứ giác OBNP là hình bình hành. d) Giả sử AN cắt OP tại K, PM cắt ON tại I, PN cắt OM tại J. Chứng minh I, J, K thẳng hàng.
Cho nửa đường tròn tâm O có đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C, D
a) Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB
b) Tìm vị trí của điểm M để hình thang ABCD có chu vi nhỏ nhất
c) Tìm vị trí của C, D để hình thang ABDC có chu vi bằng 14 cm, biết AB = 4cm
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N
a) Tính số đo góc MON
b) Chứng minh rằng MN = AM + BN
c) Chứng minh rằng \(AM.BN=R^2\) (R là bán kính của nửa đường tròn)
cho đường tròn (O,R) và điểm A sao cho OA= 2R. Từ A, vẽ AB tiếp xúc với (O) với B là tiếp điểm. Kẻ đường kính BC của (O).Gọi M là trung điểm của đoạn thẳng OB, kẻ MN vuông góc với AC tại N.
a) chứng minh tứ giác ABMN nội tiếp
b) kẻ BH vuông góc với OA tại H. cho R= 3cm. tính số đo góc BOA và độ dài đoạn BH
c) đường thẳng vuông góc với OA tại O cắt tia AB tại E. chứng minh ba điểm E,M,N thẳng hàng