Cho góc nhọn xOy >50 độ,lấy điểm A trên tia Ox (điểm A khác điểm O) và điểm B trên tia Oy sao cho OA=OB.Gọi H là trung điểm của đoạn AB.
a)Chứng minh ΔOAH =ΔOBH
b)Trên tia OH lấy điểm M sao cho OM>OH .Chứng minh AM=MB
c)Qua M kẻ đường thẳng song song với AB cắt Ox tại E và Oy tại K. Chứng minh : OH⊥EK và OM là đường trung trực của đoạn thẳng EK
d)Gọi giao điểm của AK và BE là điểm S .Chứng minh tia OS là tia phân giác của góc xOy
a) Xét ΔOHA và ΔOHB có
OA=OB(gt)
OH là cạnh chung
HA=HB(do H là trung điểm của AB)
Do đó: ΔOHA=ΔOHB(c-c-c)
b) Ta có: ΔOHA=ΔOHB(cmt)
⇒\(\widehat{OHA}=\widehat{OHB}\)(hai góc tương ứng)
mà \(\widehat{OHA}+\widehat{OHB}=180^0\)
nên \(\widehat{OHA}=\widehat{OHB}=\frac{180^0}{2}=90^0\)
⇒OH⊥AB
hay MH⊥AB
Xét ΔMAB có
MH là đường cao ứng với cạnh AB(do MH⊥AB)
MH là đường trung tuyến ứng với cạnh AB(do H là trung điểm của AB)
Do đó: ΔMAB cân tại M(định lí tam giác cân)
⇒AM=MB(đpcm)
c)Ta có: OH⊥AB(cmt)
AB//EK(gt)
Do đó: OH⊥EK(định lí 2 về quan hệ giữa vuông góc và song song)
mà M∈OH(gt)
nên OM⊥EK
Ta có: ΔOHA=ΔOHB(cmt)
⇒\(\widehat{AOH}=\widehat{BOH}\)(hai góc tương ứng)
mà tia OH nằm giữa hai tia OB,OA
nên OH là tia phân giác của \(\widehat{AOB}\)
hay OM là tia phân giác của \(\widehat{KOE}\)
Xét ΔKOE có
OM là đường cao ứng với cạnh KE(do OM⊥KE)
OM là đường phân giác ứng với cạnh KE(do OM là tia phân giác của \(\widehat{KOE}\))
Do đó: ΔKOE cân tại O(định lí tam giác cân)
⇒OK=OE
Xét ΔOMK vuông tại M và ΔEOM vuông tại M có
OK=OE(cmt)
OM là cạnh chung
Do đó: ΔOMK=ΔEOM(cạnh huyền-cạnh góc vuông)
⇒KM=ME(hai cạnh tương ứng)
hay M nằm trên đường trung trực của KE(tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OK=OE(cmt)
⇒O nằm trên đường trung trực của KE(tính chất đường trung trực của một đoạn thẳng)(2)
Từ(1) và (2) suy ra OM là đường trung trực của KE(đpcm)
a) Xét ΔOHA và ΔOHB có
OA=OB(gt)
OH là cạnh chung
HA=HB(do H là trung điểm của AB)
Do đó: ΔOHA=ΔOHB(c-c-c)
b) Ta có: ΔOHA=ΔOHB(cmt)
⇒(hai góc tương ứng)
mà
nên
⇒OH⊥AB
hay MH⊥AB
Xét ΔMAB có
MH là đường cao ứng với cạnh AB(do MH⊥AB)
MH là đường trung tuyến ứng với cạnh AB(do H là trung điểm của AB)
Do đó: ΔMAB cân tại M(định lí tam giác cân)
⇒AM=MB(đpcm)
c)Ta có: OH⊥AB(cmt)
AB//EK(gt)
Do đó: OH⊥EK(định lí 2 về quan hệ giữa vuông góc và song song)
mà M∈OH(gt)
nên OM⊥EK
Ta có: ΔOHA=ΔOHB(cmt)
⇒(hai góc tương ứng)
mà tia OH nằm giữa hai tia OB,OA
nên OH là tia phân giác của
hay OM là tia phân giác của
Xét ΔKOE có
OM là đường cao ứng với cạnh KE(do OM⊥KE)
OM là đường phân giác ứng với cạnh KE(do OM là tia phân giác của )
Do đó: ΔKOE cân tại O(định lí tam giác cân)
⇒OK=OE
Xét ΔOMK vuông tại M và ΔEOM vuông tại M có
OK=OE(cmt)
OM là cạnh chung
Do đó: ΔOMK=ΔEOM(cạnh huyền-cạnh góc vuông)
⇒KM=ME(hai cạnh tương ứng)
hay M nằm trên đường trung trực của KE(tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: OK=OE(cmt)
⇒O nằm trên đường trung trực của KE(tính chất đường trung trực của một đoạn thẳng)(2)
Từ(1) và (2) suy ra OM là đường trung trực của KE