Ta có hình vẽ:
Giả sử Om là tia phân giác của AOB => \(AOm=BOm=\frac{1}{2}.AOB\)
Do OA' vuông góc với OA; OB' vuông góc với OB
=> AOA' = 90o; BOB' = 90o
Ta có: AOB + A'OB = AOA' = 90o (1)
AOB + AOB' = BOB' = 90o (2)
Từ (1) và (2) => A'OB = AOB'
Quay trở lại với giả sử lúc đầu, từ giả sử ta đã suy ra\(AOm=BOm=\frac{1}{2}.AOB\)
=> A'OB + BOm = AOm + AOB'
=> A'Om = B'Om
Mà Om nằm giữa 2 tia OA' và OB'
=> Om là tia phân giác của A'OB' (đpcm)
b) Ta có:
A'OB' + AOB = BOB' + BOA' + AOB
=> A'OB' + AOB = 90o + AOA'
=> A'OB' + AOB = 90o + 90o = 180o (đpcm)