1. Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) (với b+d \(\ne\) 0) ta suy ra được \(\frac{a}{b}=\frac{a+c}{b+d}\)
2. Cho a,b,c,d \(\ne\) 0 . Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) hãy suy ra tỉ lệ thức \(\frac{a-b}{a}=\frac{c-d}{c}\)
Giúp mk với
Chứng minh rằng nếu\(\frac{a}{b}\)<\(\frac{c}{d}\)(b>0,d>0) thì \(\frac{a}{b}\) < \(\frac{a+c}{b+d}\)<\(\frac{c}{d}\)
Chứng minh rằng : Nếu \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\) thì a = choặc a + b + c + d = 0
1) Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a}{b}=\frac{a-c}{b-d}\left(b,d\ne0\right)\)
2) Cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(a-b\ne0;c-d\ne0\right)\)
Chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) ( a - b \(\ne\) 0, c - d \(\ne\) 0 ) ta có thể suy ra tỉ lệ thức
\(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
chứng minh rằng từ tỉ lệ thức \(\frac{a}{b}\)=\(\frac{c}{d}\)(a-b ko bằng 0, c-d ko bằng 0)ta có thể suy ra tỉ lệ thức \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Câu 3: Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\). Chứng minh \(\left(\frac{a-b-c}{b-c-d}\right)=\frac{a}{d}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng \(\frac{a}{2017a+b}=\frac{c}{2017c+d}\)
cho \(\frac{a}{b}=\frac{c}{d}\)chứng minh rằng:
(a+b+c+d).(a-b-c+d)=(a-b+c-d).(a+b-c-d)