Do \(\frac{a}{b}=\frac{c}{d}\Rightarrow a.d=b.c\)
=> 3.a.c + a.d = 3.a.c + b.c
=> a.(3.c + d) = c.(3.a + b)
=> \(\frac{a}{3.a+b}=\frac{c}{3.c+d}\left(đpcm\right)\)
Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow a=b.k\)
\(\Rightarrow c=d.k\)
Ta có:
\(\frac{a}{3a+b}=\frac{bk}{3bk+b}=\frac{bk}{b.\left(3k+1\right)}=\frac{k}{3k+1}\) (1)
\(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d.\left(3k+1\right)}=\frac{k}{3k+1}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{3a+b}=\frac{c}{3c+d}\) ( đpcm )
Mấy bạn cho mình hỏi cái bài trên thuộc dạng bài gì vậy ? Trả lời cho mình nhé ! Cảm ơn !