Do \(\frac{a}{b}=\frac{c}{d}\) => \(\frac{b}{a}=\frac{d}{c}\)
=> \(3+\frac{b}{a}=3+\frac{d}{c}\)
=> \(\frac{3a+b}{a}=\frac{3c+d}{c}\)
=> \(\frac{a}{3a+b}=\frac{c}{3c+d}\left(đpcm\right)\)
\(\frac{a}{b}=\frac{c}{d}\)
ad = bc
3ac + ad = 3ac + bc
a(3c + d) = c(3a + b)
\(\frac{a}{3a+b}=\frac{c}{3c+d}\left(\text{đ}pcm\right)\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
Suy ra \(\begin{cases}a=bk\\c=dk\end{cases}\)
Xét VT \(\frac{a}{3a+b}=\frac{bk}{3bk+b}=\frac{bk}{b\left(3k+1\right)}=\frac{k}{3k+1}\left(1\right)\)
Xét VP \(\frac{c}{3c+d}=\frac{dk}{3dk+d}=\frac{dk}{d\left(3k+1\right)}=\frac{k}{3k+1}\left(2\right)\)
Từ (1) và (2) =>Đpcm