\(\frac{1}{\sqrt[3]{2}}>\frac{1}{\sqrt[3]{3}}>...>\frac{1}{\sqrt[3]{n}}\)
\(\Rightarrow\frac{n-1}{\sqrt[3]{n}}< f\left(n\right)< \frac{n-1}{\sqrt[3]{2}}\)
Mà \(\lim\limits\frac{n-1}{\sqrt[3]{n}\left(n^2+1\right)}=\lim\limits\frac{n-1}{\sqrt[3]{n}\left(n^2+1\right)}=0\)
\(\Rightarrow\lim\limits\frac{f\left(n\right)}{n^2+1}=0\)