Bài 1: \(f\left(x\right)=x^{14}-14.x^{13}+14.x^{12}-.....-14.x+14\)
Tìm \(f\left(13\right)\)
Bài 2: Cho các hàm số \(f_1\left(x\right)=x,f_2\left(x\right)=-2x,f_3\left(x\right)=1,f_4\left(x\right)=5,f_5\left(x\right)=\dfrac{1}{x},f_6\left(x\right)=x^2\). Trong các hàm số nào có tính chất \(f\left(-x\right)=f\left(x\right),f\left(-x\right)=-f\left(x\right),f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right),f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)?\)
Cho hàm số y=f(x)=ax (a không thể bằng 0). Tìm giá trị của a để \(f\left(x_1\right).f\left(x_2\right)=f\left(x_1.x_2\right)\) với mọi \(x_1;x_2\)
Cho f (x) là hàm số xác định với mọi x khác 0 thỏa mãn điều kiện f\(\left(\dfrac{1}{x_1}\times\dfrac{1}{x_2}\right)\)= f (x1) \(\times\)f (x2) và f (4) = -3
Tính f \(\left(\dfrac{1}{16}\right)\)
Cho hàm số \(f\left(x\right)\) thỏa mãn điều kiện
\(2f\left(x\right)-\left(x-1\right)f\left(x+1\right)=2x+4\) với mọi \(x\in R\) . Tính \(f\left(0\right)\)
Bài 1 : Chứng minh rằng : \(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\) chia hết cho 120 ( với \(x\in N\))
Bài 2 : Cho \(f\left(x\right)\) là hàm số xác định với mọi x thỏa mãn điều kiện \(f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)\) và \(f\left(2\right)=10\) . Tính \(f\left(32\right)\)
Các bạn giúp ạ : Bạn @Vũ Minh Tuấn , @Băng Băng 2k6 , @Phạm Lan Hương , và cô @Akai Haruma giúp em với ạ !!!
Cho hàm số y = \(\dfrac{-2}{3}x\) ; đa thức f(x) thỏa mãn điều kiện:
\(\left(x-1\right).f\left(x\right)=\left(x+4\right).f\left(x+8\right)\)với x\(\in R\).
Chứng minh đa thức f(x) có ít nhất 1 nghiệm là số nguyên tố
Cho đa thức f(x) tỏa mãn \(\left(x^2-5x\right).f\left(x-2\right)=\left(x^2+3x+2\right).f\left(x+1\right)\)với mọi x. Chứng tỏ rằng đa thức f(x) không có nghiệm.
Cho đa thức \(f\left(x\right)\) xác định và thỏa mãn : \(x.f\left(x+2\right)=\left(x^2-9\right).f\left(x\right)\). Chứng minh rằng \(f\left(x\right)\)có ít nhất 3 ngiệm
Cho đa thức \(f\left(x\right)=a_4x^4+a_3x^3+a_2x^2+a_1x+a_0\)
Biết rằng: \(f\left(1\right)=f\left(-1\right);f\left(2\right)=f\left(-2\right)\)
Chứng minh: \(f\left(x\right)=f\left(-x\right)\forall x\)